DOI QR코드

DOI QR Code

Effects of Biomass Gasification by Addition of Steam and Calcined Dolomite in Bubbling Fluidized Beds

기포유동층에서 수증기 및 소성된 백운석 첨가에 의한 바이오매스 가스화의 영향

  • Received : 2014.12.22
  • Accepted : 2015.02.23
  • Published : 2015.12.01

Abstract

A fluidized-bed reactor with an inside diameter of 0.1 m and a height of 1.2 m was used to study the effect of steam and catalyst additions to air-blown biomass gasification on the production of producer gas. The equipment consisted of a fluidized bed reactor, a fuel supply system, a cyclone, a condenser, two receivers, steam generator and gas analyzer. Silica sand with a mean particle diameter of $380{\mu}m$ was used as a bed material and calcined dolomite ($356{\mu}m$), which is effective in tar reduction and producer gas purification, was used as the catalyst. Both of Korea wood pellet (KWP) and a pellet form of EFB (empty fruit bunch) which is the byproduct of Southeast Asia palm oil extraction were examined as biomass feeds. In all the experiments, the feeding rates were 50 g/min for EFB and 38 g/min for KWP, respectively at the reaction temperature of $800^{\circ}C$ and an ER (equivalence ratio) of 0.25. The mixing ratio (0~100 wt%) of catalyst was applied to the bed material. Air or an air-steam mixture was used as the injection gas. The SBR (steam to biomass ratio) was 0.3. The composition, tar content, and lower heating value of the generated producer gas were measured. The addition of calcined dolomite decreased tar content in the producer gas with maximum reduction of 67.3 wt%. The addition of calcined dolomite in the air gasification reduced lower heating value of the producer gas. However The addition of calcined dolomite in the air-steam gasification slightly increased its lower heating value.

바이오매스 가스화 공정을 위하여 내경이 0.1 m이고 높이가 1.2 m인 유동층 반응기에서 수증기 및 촉매의 첨가가 프로듀서가스(Producer gas)에 미치는 영향을 파악하였다. 가스화 장치는 유동층 반응기, 연료공급 장치, 사이클론, 2개의 냉각기, 수증기 발생장치 및 가스분석기로 구성하였다. 층물질 및 촉매물질로 평균입자크기 $380{\mu}m$의 비구형 silica sand 와 평균입자 $356{\mu}m$ 크기의 소성된 백운석을 사용하였다. 사용된 바이오매스는 국산 우드펠릿(Korea woody pellet) 및 동남아 팜 부산물인 EFB(empty fruit bunch)를 펠릿 형태로 가공하여 사용하였다. 실험 고정 변수로는 연료공급량 50 g/min(EFB), 38 g/min(KWP) 반응 온도 $800^{\circ}C$, ER(equivalence ratio) 0.25로 설정하였다. 조업 변수로 촉매인 소성된 백운석을 층물질 0~100 wt%의 혼합비로 사용하였다. 가스화매체로 공기 또는 Air-Steam을 사용하였다. 이때 수증기 첨가량은 SBR(steam to biomass ratio) 기준 0.3으로 하였다. 생성된 가스의 조성, 타르(Tar) 및 저위발열량을 측정하였다. 실험의 결과로 소성된 백운석은 모든 실험조건에서 프로듀서가스 타르의 함량을 감소시키며 최대 67.3 wt%의 감소율을 보였다. 저위발열량은 공기가스화에서 소성된 백운석 첨가량이 증가할수록 감소하였다. 하지만 Air-steam 가스화에서 저위발열량은 변화가 적거나 오히려 소폭 증가한 경향을 보였다.

Keywords

References

  1. Haryanto, A., Sandun, F., Naveen, M. and Sushil, A., "Current Status of Hydrogen Production Techniques by Steam Reforming of Ethanol: a Review," Energy Fuels., 19(5), 2098-2106(2005). https://doi.org/10.1021/ef0500538
  2. Lange, J. P., Price, R., Ayoub, P. M., Louis, L., Petrus, L., Clarke, L. and Gosselink, H., "Valeric Biofuels: A Platform of Cellulosic Transportation Fuel," Angew. Chem. Int. Ed., 49, 4479-4483(2010). https://doi.org/10.1002/anie.201000655
  3. Moon, J., Lee, J., Lee, U. and Hwanga, J., "Transient Behavior of Devolatilization and Char Reaction During Steam Gasification of Biomass," Bioresour. Technol., 133, 429-436(2013). https://doi.org/10.1016/j.biortech.2013.01.148
  4. Gonzalez, J. F., Roman, S., Bragado, D. and Calderon, M., "Investigation on the Reactions Influencing Biomass Air and Air/steam Gasification for Hydrogen Production," Fuel Process. Technol., 89(8), 764-772(2008). https://doi.org/10.1016/j.fuproc.2008.01.011
  5. Franco, C., Pinto, F., Gulyurtlu, I. and Cabrita, I. "The Study of Reactions Influencing the Biomass Steam Gasification Process," Fuel., 82(7), 835-842(2003). https://doi.org/10.1016/S0016-2361(02)00313-7
  6. Nora, M., Tim, S., Christoph, A. U. and Sean, M. B., "Thermodynamics of Autothermal Wood Gasification," Environ. Prog. Sustainable Energy., 82(3), 347-354(2009).
  7. Salaices, E., Serrano, B. and Lasa, H., "Biomass Catalytic Steam Gasification Thermodynamics Analysis and Reaction Experiments in a CREC Riser Simulator," Ind. Eng. Chem. Res., 49(15), 6834-6844(2010). https://doi.org/10.1021/ie901710n
  8. Mun, T.-Y., "Air Gasification of Dried Sewage Sludge: Tar Removal and the Improvement of Producer Gas Quality by the Application of Additives in a Two-stage Gasifier," Ph.D. Dissertation, University of Seoul, Republic of Korea, Seoul(2013).
  9. Sousa, L. C. R., "Gasification of Wood, Urban Wastewood (Altholz) and Other Wastes in a Fluidised Bed Reactor," Ph.D. Dissertation, Federal Institute of Technology Zurich, Swiss, Zurich(2001).
  10. Anna, P., Sylwester, K. and Wlodzimierz, B., "Effect of Operating Conditions on Tar and Gas Composition in High Temperature Air/steam Gasification (HTAG) of Plastic Containing Waste," Fuel Process Technol., 87(3), 223-233(2006). https://doi.org/10.1016/j.fuproc.2005.08.002
  11. Li, C. and Suzuki, K., "Tar Property, Analysis, Reforming Mechanism and Model for Biomass Gasification-An Overview," Renewable Sustainable Energy Rev., 13(3), 594-604(2009). https://doi.org/10.1016/j.rser.2008.01.009
  12. Bergman, P. C. A., Paasen, V. B. and Boerrigter, H., "The Novel "OLGA'' Technology for Complete Tar Removal from Biomass Producer Gas," Pyrolysis and Gasification of Biomass and Waste, Expert Meeting, October, Strasbourg(2002).
  13. Sutton, D., Kelleher, B. and Ross, J. R. H., "Review of Literature on Catalysts for Biomass Gasification," Fuel Process. Technol., 73(3), 155-173(2001). https://doi.org/10.1016/S0378-3820(01)00208-9
  14. Devi, L., Ptasinski, K. J. and Janssen, F. J. J. G., "A Review of the Primary Measures for Tar Elimination in Biomass Gasification Processes," Biomass Bioenergy., 24(2), 125-140(2003). https://doi.org/10.1016/S0961-9534(02)00102-2
  15. Geldart, D., "Homogeneous Fluidization of Fine Powders Using Various Gases and Pressures," Powder Technol., 19(1), 133-136 (1978). https://doi.org/10.1016/0032-5910(78)80084-9
  16. Narvaez, I., Orio, A., Aznar, M. P. and Corella, J., "Biomass Gasification with Air in an Atmospheric Bubbling Fluidized Bed. Effect of Six Operational Variables on the Quality of the Produced Raw Gas," Ind. Eng. Chem. Res., 35(7), 2110-2120(1996). https://doi.org/10.1021/ie9507540
  17. Baker, E. G., Brown, M. D., Elliott, D. C. and Mudge, L. K., "Characterization and Treatment of Tars From Biomass Gasifier," AIChE National Meeting, August, Denver(1988).
  18. Jess, A., "Mechanisms and Kinetics of Thermal Reactions of Aromatic Hydrocarbons from Pyrolysis of Solid Fuels," Fuel., 75(12), 1441-1448(1996). https://doi.org/10.1016/0016-2361(96)00136-6
  19. Andres, J. M., Narros, A. and Rodriguez, M. E., "Behavior of Dolomite, Olivine and Alumina as Primary Catalysts in Air-steam Gasification of Sewage Sludge," Fuel., 90(2), 521-527(2011). https://doi.org/10.1016/j.fuel.2010.09.043
  20. Gonzalez, J. F., Roman, S., Baragado, D. and Calderon, M., "Investigation on the Reactions Influencing Biomass Air and Air/steam Gasification for Hydrogen Production," Fuel., 89(8), 764-772(2008).
  21. Kim, U. K., Son, S. M., Kang, S. H., Kang, Y., Kim, S. D. and Jumg, H., "Characteristics of Steam Gasification and Combustion of Naphtha Tar Pitch," Korean Chem. Eng. Res., 45(6), 604-610(2007).
  22. Kim, D. W., Lee, J. M., Kim, J. S. and Seon, P. K., "Study on the Combustion Characteristics of Wood-pellet and Korean Anthracite Using TGA," Korean Chem. Eng. Res., 48(1), 58-67(2010).

Cited by

  1. 3MWth급 순환유동층 바이오매스 가스화기의 운전에서 Equivalence ratio 영향 vol.34, pp.1, 2015, https://doi.org/10.12925/jkocs.2017.34.1.58
  2. Biomass Gasification 공정에서 발생하는 Tar 제거연구 vol.19, pp.8, 2015, https://doi.org/10.5762/kais.2018.19.8.552
  3. 미이용 산림바이오매스 및 폐목재의 기포 유동층 Air 가스화 특성 연구 vol.57, pp.6, 2019, https://doi.org/10.9713/kcer.2019.57.6.874
  4. Study on the gasification of pine sawdust with dolomite catalyst in a pilot-scale fluidized bed gasifier vol.42, pp.9, 2015, https://doi.org/10.1080/15567036.2019.1602223