DOI QR코드

DOI QR Code

Predicting the Transport Velocity by the Correlation on Particle Entrainment Rate in the Gas Fluidized-bed

기체 유동층에서 입자 비산속도 상관식에 의한 수송속도의 예측

  • Received : 2017.05.25
  • Accepted : 2017.07.14
  • Published : 2017.10.01

Abstract

A model for predicting the transport velocity was proposed using the correlation of the particle entrainment rate in the gas fluidized bed. The emptying time method was simulated using correlations of Choi et al. and Li and Kato. In order to exclude the influence of the unit of the gas velocity, the dimensionless velocity obtained by dividing the gas velocity by the terminal velocity was used as the value of the x-axis. The inverse of the particle entrainment rate was used as the value of the y-axis. When increasing the gas velocity, the non-dimensional velocity, at which the decreasing slope of the y-value is 0.398 [$m^2s/kg$] in absolute value, was considered as the transport velocity. The transport velocity predicted by the model was in good agreement even at high temperature and high pressure.

기체 유동층에서 입자비산속도에 관한 상관식을 사용하여 입자의 수송속도를 예측하는 모델을 제안하였다. Choi 등과 Li와 Kato의 상관식을 사용하여 emptying time 방법을 모사하였다. 기체속도의 단위에 의한 영향을 배제하기 위해서, 기체속도를 종말속도로 나눈 무차원 속도를 x-축의 값으로 사용하였다. y-축은 입자비산속도의 역수를 사용하였다. 기체속도를 증가시킬 때, y-값의 감소 기울기가 절대값으로 0.398 [$m^2s/kg$]를 나타내는 무차원 속도를 수송속도로 간주하였다. 모델의 예측값은 고온, 고압에서도 측정값과 비교적 잘 일치하였다.

Keywords

References

  1. Yerushalmi, J. and Cankurt, N. T., "Further Studies of the Regimes of Fluidization," Powder Technol., 24(2), 187-205(1979). https://doi.org/10.1016/0032-5910(79)87036-9
  2. Li, Y. and Kwauk M., in J. R. Grace and J. M. Matsen (Ed.), Fluidization, Plenum Press, New York, 537-544(1980).
  3. Avidan, A. A. and Yerushalmi, J., "Bed Expansion in High Velocity Fluidization," Powder Technol., 32(2), 223-232(1982). https://doi.org/10.1016/0032-5910(82)85024-9
  4. Shin, B. C., Koh, Y. B. and Kim, S. D., "Hydrodynamics and Coal Combustion Characteristics of Circulating Fluidized Beds," Hwahak Konghak., 22(5), 253-258(1984).
  5. Han, G. Y., Lee, G. S. and Kim, S. D., "Hydrodynamic Characteristics of a Circulating Fluidized Bed," Korean J. Chem. Eng., 2(2), 141-147(1985). https://doi.org/10.1007/BF02697500
  6. Chesonis, D. C., Klinzing, G. E., Shaah, Y. T. and Dassori, C. G., "Hydrodynamics and Mixing of Solids in a Recirculating Fluidized Bed," Ind. Eng. Chem. Res., 29(9), 1785-1792(1990). https://doi.org/10.1021/ie00105a008
  7. Lee, G. S. and Kim, S. D., "The Vertical Pneumatic Transport of Cement Raw Meal," Korean Chem. Eng. Res., 20(3), 207-216(1982).
  8. Perales, J. F., Coll, T., Llop, M. F., Puigjaner, L., Arnaldos, J. and Casal, J., in P. Basu, M. Horio and M. Hasatani (Ed.), Circulating Fluidized Bed Technology III, Pergamon Press, New York, 73-78(1991).
  9. Ishii, H. and Horio, M., "The Flow Structures of a Circulating Fluidized Bed," Adv. Powder Technol., 2(1), 25-36(1991). https://doi.org/10.1016/S0921-8831(08)60718-9
  10. Bi, H. T. and Fan, L. S., "Existence of Turbulent Regime in Gas-Solid Fluidization," AIChE J., 38(2), 297-301(1992). https://doi.org/10.1002/aic.690380216
  11. Hirama, T., Takeuchi, H. and Chiba, T., "Regime Classification of Macroscopic Gas-Solid Flow in a Circulating Fluidized Bed Riser," Powder Technol., 70(3), 215-222(1992). https://doi.org/10.1016/0032-5910(92)80056-3
  12. Horio, M., Ishii, H. and Nishimuro, M., "On the Nature of Turbulent and Fast Fluidized Beds," Powder Technol., 70(3), 229-236(1992). https://doi.org/10.1016/0032-5910(92)80058-5
  13. Adanez, J., Diego, L. F. de and Gayan, P., "Transport Velocities of Coal and Sand Particles," Powder Technol., 77(1), 61-68(1993). https://doi.org/10.1016/0032-5910(93)85008-W
  14. Bi, H. T. and Grace, J. R., "Flow Regime Diagrams for Gas-Solid Fluidization and Upward Transport," Int. J. Multiphase Flow, 21(6), 1229-1236(1995). https://doi.org/10.1016/0301-9322(95)00037-X
  15. Chehbouni, A., Chaouki, J., Guy, C. and Klvana, D., "Effets de Differents Parametres sur les Vitesses de Transition de la Fluidisation en Regime Turbulent," The Canadian J. Chem. Eng., 73(1), 41-50(1995). https://doi.org/10.1002/cjce.5450730104
  16. Namkung, W., Kim, S. W. and Kim, S. D., "Flow Regimes and Axial Pressure Profiles in a Circulating Fluidized Bed," Chem. Eng. J., 72(3), 245-252(1999). https://doi.org/10.1016/S1385-8947(99)00013-3
  17. Bae, D.-H., Ryu, H.-J., Shun, D., Jin, G.-T., Lee, D.-K., "Effect of Temperature on Transition Velocity from Turbulent Fluidization to Fast Fluidization in a Gas Fluidized Bed," Korean Chem. Eng. Res., 39(4), 456-464(2001).
  18. Smolders, K. and Baeyens, J., "Gas Fluidized Beds Operating at High Velocities: a Critical Review of Occurring Regimes," Powder Technol., 119(2-3), 269-291(2001). https://doi.org/10.1016/S0032-5910(01)00267-4
  19. Ryu, H.-J., Lim, N.-Y., Bae, D.-H. and Jin, G.-T., "Minimum Fluidization Velocity and Transition Velocity to Fast Fluidization of Oxygen Carrier Particle for Chemical-Looping Combustor," Korean Chem. Eng. Res., 41(5), 624-631(2003).
  20. Balasubramanian, N., Srinivasakannan, C. and Basha, C. A., "Transition Velocities in the Riser of a Circluating Fluidized Bed," Adv. Powder Technol., 16(3), 247-260(2005). https://doi.org/10.1163/1568552053750198
  21. Du, B., Warsito, W. and Fan, L. S., "Imaging the Choking Transition in Gas-Solid Risers Using Electrical Capacitance Tomography," Ind. Eng. Chem. Res., 45(15), 5384-5395(2006). https://doi.org/10.1021/ie051401w
  22. Seo, M. W., Goo, J. H., Kim, S. D., Lee, J. G., Guahk, Y. T., Rho, N. S., Koo, G. H., Lee, D. Y., Cho, W. C. and Song, B. H., "The Transition Velocities in a Dual Circulating Fluidized Bed Reactor with Variation of Temperatures," Powder Technol., 264, 583-591 (2014). https://doi.org/10.1016/j.powtec.2014.05.059
  23. Khurram, M. S., Choi, J.-H., Won, Y. S., Jeong, A.-R., Park, Y. C., Ryu, H.-J. and Yi, C.-K., "Effects of Angle on the Transport Velocity in an Inclined Fluidized-Bed," Korean J. Chem. Eng., 32(12), 2542-2549(2015). https://doi.org/10.1007/s11814-015-0157-0
  24. Kim, J., Bae, D.-H., Baek, J.-I., Park, Y.-S. and Ryu, H.-J., "Effect of Pressure on Minimum Fluidization Velocity and Transition Velocity to Fast Fluidization of Oxygen Carrier for Chemical Looping Combustor," Trans. of the Korean Hydrogen and New Energy Society, 28(1), 85-91(2017). https://doi.org/10.7316/KHNES.2017.28.1.85
  25. Choi, J. H., Chang, I. Y., Shun, D. W., Yi, C. K., Son, J. E. and Kim, S. D., "Correlation on the Particle Entrainment Rate in Gas Fluidized Beds," Ind. Eng. Chem. Res., 38(6), 2491-2496(1999). https://doi.org/10.1021/ie980707i
  26. Wen, C. Y. and Yu, Y. H., "A Generalized Method for Predicting the Minimum Fluidization Velocity," AIChE J., 12(3), 610-612(1966). https://doi.org/10.1002/aic.690120343
  27. Ma, X. X. and Kato, K., "Effect of Interparticle Adhesion Forces on Elutriation of Fine Powders from a Fluidized Bed of a Binary Particle Mixture," Powder Technol., 95(2), 93-101(1998). https://doi.org/10.1016/S0032-5910(97)03262-2
  28. Li, J. and Kato, K., "A Correlation of Elutriation Rate Constant for Adhesion Particles (Group C Particles)," Powder Technol., 118(3), 209-218(2001). https://doi.org/10.1016/S0032-5910(00)00404-6