DOI QR코드

DOI QR Code

Synthesis of Size Controllable Amine-Functionalized Silica Nanoparticles Based on Biomimetic Polyamine Complex

생체 모방 폴리아민 복합체 기반의 크기 조절이 가능한 아민 기능화 실리카 나노입자의 합성

  • Kim, Dong-Yeong (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Kim, Jae Seong (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Lee, Chang-Soo (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 김동영 (충남대학교 공과대학 응용화학공학과) ;
  • 김재성 (충남대학교 공과대학 응용화학공학과) ;
  • 이창수 (충남대학교 공과대학 응용화학공학과)
  • Received : 2022.02.11
  • Accepted : 2022.02.28
  • Published : 2022.08.01

Abstract

This study demonstrates a method for synthesis of amine functionalized and easily size controllable silica nanoparticles through biomimetic polyamine complex. First, we generate a polyamine nanocomplex composed of polyallylamine hydrochloride (PAH) and phosphate ion (pi) to synthesize silica nanoparticles. The size of polyamine nanocomplex is reversibly adjusted within the range of about 50 to 300 nm according to the pH conditions. Amine groups of the PAH in the nanocomplex catalyzes the condensation reaction of silicic acid. As a results, silica nanoparticles are synthesized based on nanocomplex in a very short time. Finally, we synthesize silica nanoparticles with various sizes according to the pH conditions. In the process of synthesizing silica nanoparticles, polyamine chains that act as catalysts are incorporated into the inside and surface of the particles, subsequently, amine groups are exposed on the surface of silica nanoparticles. As a results, the synthesis and surface modification of silica nanoparticles are performed simultaneously, and the silica nanoparticles introduced with amine groups can be easily synthesized by adjusting the sizes of the silica nanoparticles. Finally, we demonstrate the synthesis of functional silica nanoparticles in a short time under milder conditions than the conventional synthetic method. Furthermore, this method can be applicable to bioengineering and materials fields.

본 연구는 생체 모방 폴리아민 복합체를 통해 아민 그룹(amine group)이 기능화 되고 크기 조절이 간편한 실리카 나노입자의 합성 방법에 관한 것이다. 먼저, 실리카 나노입자를 합성하기 위한 촉매로써 polyallylamine hydrochloride(PAH)와 인산 이온(phosphate ion)으로 구성된 폴리아민 나노 복합체를 형성하였다. 복합체의 크기는 pH 조건에 따라 가역적인 조절이 가능하다. 나노 복합체에 존재하는 PAH 주쇄의 다량의 아민 그룹들은 silicic acid의 축합(condensation) 반응을 촉매 하며, 결과적으로 실리카 나노입자를 매우 빠른 시간 내에 합성할 수 있다. 최종적으로 pH 조건에 따라 다양한 크기를 갖는 실리카 나노 입자를 합성하였다. 실리카 나노입자의 합성 과정에서 촉매 역할을 하는 PAH는 나노입자의 내부 및 표면에 함입되고 합성된 실리카 나노입자의 표면에 아민 그룹이 노출된다. 본 방법은 실리카 나노입자의 합성과 표면개질이 동시에 이루어지며, 아민 그룹이 도입된 실리카 나노입자를 다양한 크기로 조절하여 손쉽게 합성할 수 있다. 최종적으로, 본 연구에서 제시한 방법은 기존의 합성법 보다 온화한 조건 하에서 단시간 내에 실리카 나노입자를 합성할 수 있으며, 생체 공학 및 재료 분야에서 적용되어 넓게 활용될 수 있다.

Keywords

Acknowledgement

이 논문은 충남대학교 학술연구비에 지원을 받아 수행된 연구로 이에 감사드립니다.

References

  1. Drummond, C., McCann, R. and Patwardhan, S. V., "A Feasibility Study of the Biologically Inspired Green Manufacturing of Precipitated Silica," Chem. Eng. J., 244, 483-492(2014). https://doi.org/10.1016/j.cej.2014.01.071
  2. He, Q. and Shi, J., "Mesoporous Silica Nanoparticle Based Nano Drug Delivery Systems: Synthesis, Controlled Drug Release and Delivery, Pharmacokinetics and Biocompatibility," J. Mater. Chem., 21(16), (2011).
  3. Jeon, H. S., Park, S. E., Ahn, B. and Kim, Y. K., "Enhancement of Biodiesel Production in Chlorella Vulgaris Cultivation Using Silica Nanoparticles," Biotechnol. Bioprocess Eng., 22(2), 136-141(2017). https://doi.org/10.1007/s12257-016-0657-8
  4. Green, D. L., Lin, J. S., Lam, Y. F., Hu, M. Z. C., Schaefer, D. W. and Harris, M. T., "Size, Volume Fraction, and Nucleation of Stober Silica Nanoparticles," J. Colloid Interface Sci., 266(2), 346-358(2003). https://doi.org/10.1016/S0021-9797(03)00610-6
  5. Stober, W., Fink, A. and Bohn, E., "Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range," J. Colloid Interface Sci., 26(1), 62-69(1968). https://doi.org/10.1016/0021-9797(68)90272-5
  6. An, C. Y., Lee, B. H. and Song, K. C., "Preparation of Hydrophilic Coating Films by using of Aminosilane and Colloidal Silica," Korean Chem. Eng. Res., 55(2), 247-252(2017).
  7. Graf, C., Gao, Q., Schutz, I., Noufele, C. N., Ruan, W., Posselt, U., Korotianskiy, E., Nordmeyer, D., Rancan, F., Hadam, S., Vogt, A., Lademann, J., Haucke, V. and Ruhl, E., "Surface Functionalization of Silica Nanoparticles Supports Colloidal Stability in Physiological Media and Facilitates Internalization in Cells," Langmuir, 28(20), 7598-7613(2012). https://doi.org/10.1021/la204913t
  8. Lee, E. K., Cho, K., Kim, S. K., Lim, J. S. and Kim, J. N., "Control of Water-Adsorption properties of Mesoporous Silica and MOF by Ion Exchange and Salt Impregnation," Clean Technol., 24(1), 55-62(2018). https://doi.org/10.7464/KSCT.2018.24.1.055
  9. Kim, D. Y., Jin, S. H., Jeong, S. G., Lee, B., Kang, K. K. and Lee, C. S., "Microfluidic Preparation of Monodisperse Polymeric Microspheres Coated with Silica Nanoparticles," Sci. Rep., 8(1), 8525(2018). https://doi.org/10.1038/s41598-018-26829-z
  10. Nguyen, T. H., Mai, N. T., Reddy, V. R. M., Jung, J. H. and Truong, N. T. N., "Synthesis of Silica Aerogel Particles and its Application to Thermal Insulation Paint," Korean J. Chem. Eng., 37(10), 1803-1809(2020). https://doi.org/10.1007/s11814-020-0574-6
  11. Moon, S. Y., Naik, B. and Park, J. Y., "Photocatalytic Activity of Metal-decorated Sio2@tio2 Hybrid Photocatalysts Under Water Splitting," Korean J. Chem. Eng., 33(8), 2325-2329(2016). https://doi.org/10.1007/s11814-016-0085-7
  12. Rahman, I. A. and Padavettan, V., "Synthesis of Silica Nanoparticles by Sol-gel: Size-dependent Properties, Surface Modification, and Applications in Silica-polymer Nanocomposites - A Review," J. Nanomater., 2012, 1-15(2012). https://doi.org/10.1155/2012/132424
  13. Hench, L. L. and West, J. K., "The Sol-gel Process," Chem. Rev., 90(1), 33-72(1990). https://doi.org/10.1021/cr00099a003
  14. Liberman, A., Mendez, N., Trogler, W. C. and Kummel, A. C., "Synthesis and Surface Functionalization of Silica Nanoparticles for Nanomedicine," Surf. Sci. Rep., 69(2-3), 132-158(2014). https://doi.org/10.1016/j.surfrep.2014.07.001
  15. Bagwe, R. P., Hilliard, L. R. and Tan, W., "Surface Modification of Silica Nanoparticles to Reduce Aggregation and Nonspecific Binding," Langmuir, 22(9), 4357-4362(2006). https://doi.org/10.1021/la052797j
  16. Hsiao, I. L., Fritsch-Decker, S., Leidner, A., Al-Rawi, M., Hug, V., Diabate, S., Grage, S. L., Meffert, M., Stoeger, T., Gerthsen, D., Ulrich, A. S., Niemeyer, C. M. and Weiss, C., "Biocompatibility of Amine-functionalized Silica Nanoparticles: The Role of Surface Coverage," Small, 15(10), 1805400(2019).
  17. Miller, P. J. and Shantz, D. F., "Covalently Functionalized Uniform Amino-silica Nanoparticles. Synthesis and Validation of Amine Group Accessibility and Stability," Nanoscale Adv., 2(2), 860-868(2020). https://doi.org/10.1039/c9na00772e
  18. Wohl, B. M. and Engbersen, J. F., "Responsive Layer-by-layer Materials for Drug Delivery," J. Control. Release, 158(1), 2-14(2012). https://doi.org/10.1016/j.jconrel.2011.08.035
  19. Li, J., Qu, X., Payne, G. F., Zhang, C., Zhang, Y., Li, J., Ren, J., Hong, H. and Liu, C., "Biospecific Self-assembly of a Nanoparticle Coating for Targeted and Stimuli-responsive Drug Delivery," Adv. Funct. Mater., 25(9), 1404-1417(2015). https://doi.org/10.1002/adfm.201403636
  20. Meng, H., Liong, M., Xia, T., Li, Z., Ji, Z., Zink, J. I. and Nel, A. E., "Engineered Design of Mesoporous Silica Nanoparticles to Deliver Doxorubicin and p-glycoprotein Sirna to Overcome Drug Resistance in a Cancer Cell Line," ACS Nano, 4(8), 4539-4550(2010). https://doi.org/10.1021/nn100690m
  21. Lutz, K., Groger, C., Sumper, M. and Brunner, E., "Biomimetic Silica Formation: Analysis of the Phosphate-induced Self-assembly of Polyamines," Phys. Chem. Chem. Phys., 7(14), 2812-2815(2005). https://doi.org/10.1039/b505945c
  22. Kang, K. K., Oh, H. S., Kim, D. Y., Shim, G. and Lee, C. S., "Synthesis of Silica Nanoparticles Using Biomimetic Mineralization with Polyallylamine Hydrochloride," J. Colloid Interface Sci., 507, 145-153(2017). https://doi.org/10.1016/j.jcis.2017.07.115
  23. Kim, D. Y., Seo, J. H., Lee, B., Kang, K. K. and Lee, C. S., "Synthesis of Polymer-silica Hybrid Particle by Using Polyamine Nano Complex," Clean Technol., 27(2), 115-123(2021). https://doi.org/10.7464/KSCT.2021.27.2.115
  24. Neville, F., Murphy, T. and Wanless, E. J., "The Formation of Polyethyleneimine-trimethoxymethylsilane Organic-inorganic Hybrid Particles," Colloids Surf. Physicochem. Eng. Aspects, 431, 42-50(2013). https://doi.org/10.1016/j.colsurfa.2013.04.022
  25. Nguyen, Q. X., Belgard, T. G., Taylor, J. J., Murthy, V. S., Halas, N. J. and Wong, M. S., "Water-phase Synthesis of Cationic Silica/polyamine Nanoparticles," Chem. Mater., 24(8), 1426-1433(2012). https://doi.org/10.1021/cm203132m
  26. Lechner, C. C. and Becker, C. F. W., "Exploring the Effect of Native and Artificial Peptide Modifications on Silaffin Induced Silica Precipitation," Chem. Sci., 3(12), (2012). https://doi.org/10.1039/c2sc21183a
  27. Cranford, S. W., Ortiz, C. and Buehler, M. J., "Mechanomutable Properties of a Paa/pah Polyelectrolyte Complex: Rate Dependence and Ionization Effects on Tunable Adhesion Strength," Soft Matter, 6(17), (2010).
  28. Pismenskaya, N., Laktionov, E., Nikonenko, V., El Attar, A., Auclair, B. and Pourcelly, G., "Dependence of Composition of Anion-exchange Membranes and Their Electrical Conductivity on Concentration of Sodium Salts of Carbonic and Phosphoric Acids," J. Membr. Sci., 181(2), 185-197(2001). https://doi.org/10.1016/s0376-7388(00)00529-9
  29. Tran, T. N., Anh Pham, T. V., Phung Le, M. L., Thoa Nguyen, T. P. and Tran, V. M., "Synthesis of Amorphous Silica and Sulfonic Acid Functionalized Silica Used as Reinforced Phase for Polymer Electrolyte Membrane," Adv. Nat. Sci.: Nanosci. Nanotechnol., 4(4), (2013).
  30. Zhao, F., Wang, X., Ding, B., Lin, J., Hu, J., Si, Y., Yu, J. and Sun, G., "Nanoparticle Decorated Fibrous Silica Membranes Exhibiting Biomimetic Superhydrophobicity and Highly Flexible Properties," RSC Adv., 1(8), (2011).
  31. Nakagawa, T. and Soga, M., "A New Method for Fabricating Water Repellent Silica Films Having High Heat-resistance Using the Sol-gel Method," J. Non-Cryst. Solids, 260(3), 167-174(1999). https://doi.org/10.1016/S0022-3093(99)00594-3
  32. Guo, M., Ding, B., Li, X., Wang, X., Yu, J. and Wang, M., "Amphiphobic Nanofibrous Silica Mats with Flexible and High-heat-resistant Properties," J. Phys. Chem. C, 114(2), 916-921(2010). https://doi.org/10.1021/jp909672r
  33. Mathapa, B. G. and Paunov, V. N., "Fabrication of Novel Cyclodextrin-polyallylamine Hydrochloride co-polymeric Microcapsules by Templating Oil-in-water Emulsions," Soft Matter, 9(19), (2013).
  34. Serrano, M. P., Rafti, M., Thomas, A. H. and Borsarelli, C. D., "Photosensitizing Properties of Hollow Microcapsules Built by Multilayer Self-assembly of Poly(allylamine hydrochloride) Modified with Rose Bengal," RSC Adv., 9(33), 19226-19235(2019). https://doi.org/10.1039/c9ra03153g
  35. Paltrinieri, L., Wang, M., Sachdeva, S., Besseling, N. A. M., Sudholter, E. J. R. and de Smet, L. C. P. M., "Fe3o4nanoparticles Coated with a Guanidinium-functionalized Polyelectrolyte Extend the ph Range for Phosphate Binding," J. Mater. Chem. A, 5(35), 18476-18485(2017). https://doi.org/10.1039/C7TA04054G
  36. Zhao, H. C., Wu, X. T., Tian, W. W. and Ren, S. T., "Synthesis and Thermal Property of Poly(allylamine hydrochloride)," Adv Mat Res., 150, 1480-1483(2010). https://doi.org/10.4028/www.scientific.net/AMR.150-151.1480
  37. Kuo, P. L., Chen, W. F. and Liang, W. J., "Proton Transportation in an Organic-inorganic Hybrid Polymer Electrolyte Based on a Polysiloxane/poly(allylamine) Network," J. Polym. Sci., 43, 3359-3367(2005). https://doi.org/10.1002/pola.20754