DOI QR코드

DOI QR Code

Electrical Conductivity, Optical Transmittance, and Oxidation Stability of Transparent Conductive Polymer Film Coated With Layered Pristine Single-walled Carbon Nanotube and Silver Nanowire

무정제 단일벽 탄소나노튜브와 은나노와이어가 적층으로 코팅된 투명전도성 고분자 필름의 전기 전도성, 광학 투과도 및 산화안정성

  • Young Sil Lee (Industry-Academic Cooperation Foundation, Kumoh National Institute of Technology)
  • 이영실 (금오공과대학교 산학협력단)
  • Received : 2023.02.13
  • Accepted : 2023.05.26
  • Published : 2023.08.01

Abstract

An electrically conductive and transparent electrode was created by applying a dispersion of pristine single-walled carbon nanotubes (SWCNTs) and silver nanowires to a polyethylene terephthalate (PET) film using a bar coating method. The SWCNTs were added to increase the electrical conductivity and transmittance of the silver nanowires while also preventing the haze from increasing due to the stacking of multiple layers containing SWCNTs and silver nanowires on the PET substrate. The silver nanowires in the electrode were also found to be stable against oxidation. The transparent electrode displayed excellent electrical and optical properties, with a sheet resistance of 47 Ω/□, transmittance of 96.72%, and haze of 1.93%. Additionally, the sheet resistance of the electrode remained stable over time, with a change of only 6.4% after a constant temperature and humidity test, making it suitable for long-term use. A hybrid transparent electrode that is economically feasible and environmentally sustainable has been developed through the utilization of pristine SWCNT and silver nanowire.

탄소나토튜브를 투명 전극에 활용하기 위한 필수요소인 정제과정없이 무정제 단일벽 탄소나노튜브(single-walled carbon nanotube, SWCNT)와 은나노와이어(silver nanowire) 분산액을 제조하여 폴리에틸렌 테레프탈레이트(polyethylene terephthalate, PET) 필름에 바 코팅을 이용하여 전기전도성 투명전극을 제조하였다. PET 기판 위에 SWCNT 및 은 나노와이어를 각각 포함하는 코팅층을 상호 교차시켜 적층함으로서 은나노와이어의 전기 전도도와 투과도를 극대화시키고 헤이즈 (haze)가 증가되는 단점을 극복하기 위해 SWCNT를 도입하였고, 무정제 SWCNT내에 존재하는 금속 촉매의 산화에 의해서 항온항습 테스트 후 저항이 급격하게 증가하는 문제를 은 나노와이어가 전기적 네트워크 형성에 기여하여 산화에 대한 안정성을 확보할 수 있었다. SWCNT함량이 0.025 wt% 인 분산액을 PET 기판에 먼저 코팅하고 그 위에 은 나노와이어의 함량이 0.05 wt%인 분산액을 코팅한 투명전극의 시트 저항은 47 Ω/□, 투과도는 96.72%, 헤이즈는 1.93% 로 전기적 광학적 특성이 우수하게 나왔고, 산화 안정성 평가를 위한 항온 항습 실험 후 시트 저항의 변화율이 6.4% 로 적게 나타나서 장기적 사용에 적합하다는 것을 알 수 있었다. 무정제 SWCNT 사용함으로 저비용, 친환경 하이브리드 투명전극을 상업적으로 활용 가능한 수준의 제품이 개발되었다.

Keywords

Acknowledgement

본 연구는 중소기업기술정보진흥원지원 중소기업R&D역량제고사업(RS-2023-00253642) 의 지원에 의해 수행되었습니다.

References

  1. Lewis, J., Grego, S., Chalamala, B., Vick, E. and Temple, D. "Highly Flexible Transparent Electrodes for Organic Light-Emitting Diode-Based Displays," Appl. Phys. Lett., 85, 3450-3452(2004). https://doi.org/10.1063/1.1806559
  2. Wu, H., Kong, D. S., Ruan, Z. C., Hsu, P. C., Wang, S., Yu, Z. F., Carney, T. J., Hu, L. B., Fan, S. H. and Cui, Y., "A Transparent Electrode Based on A Metal Nanotrough Network," Nat. Nanotechnol., 8, 421-425(2013). https://doi.org/10.1038/nnano.2013.84
  3. Peng, H. L. et al. "Topological Insulator Nanostructures for Near-infrared Transparent Flexible Electrodes," Nature Chem., 4, 281-286(2012). https://doi.org/10.1038/nchem.1277
  4. Li, B., Cao, X., Ong, H. G., Cheah, J. W., Zhou, X., Yin, Z., Li, H., Wang, J., Boey, F., Huang, W. and Zhang, H., "All-Carbon Electronic Devices Fabricated by Directly Grown Single-Walled Carbon Nanotubes on Reduced Graphene Oxide Electrodes," Adv. Mater., 22, 3058-3061(2010). https://doi.org/10.1002/adma.201000736
  5. Cai, D., Song, M. and Xu, C., "Highly Conductive Carbon-Nanotube/Graphite-Oxide Hybrid Films," Adv. Mater., 20, 1706-1709(2008). https://doi.org/10.1002/adma.200702602
  6. Kim, S. H., Song, W., Jung, M. W., Kang, M.-A., Kim, K., Chang, S.-J., Lee, S. S., Lim, J., Hwang, J., Myung, S. and An, K.-S., "Carbon Nanotube and Graphene Hybrid Thin Film for Transparent Electrodes and Field Effect Transistors," Adv. Mater., 26, 4247-4252(2014). https://doi.org/10.1002/adma.201400463
  7. Lv, R., Cruz-Silva, E. and Terrones, M., "Building Complex Hybrid Carbon Architectures by Covalent Interconnections: Graphene-Nanotube Hybrids and More," ACS Nano, 8, 4061-4069(2014). https://doi.org/10.1021/nn502426c
  8. Kholmanov, I. N., Magnuson, C. W., Piner, R., Kim, J. Y., Aliev, A. E., Tan, C., Kim, T. Y., Zakhidov, A. A., Sberveglieri, G., Baughman, R. H. and Ruoff, R. S., "Optical, Electrical, and Electromechanical Properties of Hybrid Graphene/Carbon Nanotube Films," Adv. Mater., 27, 3053-3059(2015). https://doi.org/10.1002/adma.201500785
  9. Kim, Y. S., Kumar, K., Fisher, F. T. and Yang, E. H., "Out-of-plane Growth of CNTs on Graphene for Supercapacitor Applications," Nanotechnology, 23, 015301(2011).
  10. Tung, V. C., Chen, L-M., Allen, M. I., Wassei, J. K,, Nelson, K., Kaner, R. B. and Yang, Y., "Low-Temperature Solution Processing of Graphene-Carbon Nanotube Hybrid Materials for High-Performance Transparent Conductors," Nano Lett., 9, 1949-1955 (2009). https://doi.org/10.1021/nl9001525
  11. Cui, X,, Lv, R., Sagar, R. U. R., Liu, C. and Zhang, Z., "Reduced Graphene Oxide/Carbon Nanotube Hybrid Film as High Performance Negative Electrode for Supercapacitor," Electrochim. Acta, 169, 342-350(2015). https://doi.org/10.1016/j.electacta.2015.04.074
  12. Iijima, S., "Helical Microtubules of Graphitic Carbon," Nature, 354, 56-58(1991). https://doi.org/10.1038/354056a0
  13. Hone, J., Whitney, M. and Zettl, A., "Thermal Conductivity of Single-Walled Carbon Nanotubes," Synth. Met., 103, 2498-2499 (1999). https://doi.org/10.1016/S0379-6779(98)01070-4
  14. Frank, S., Poncharal, P., Wang, Z. L. and de Heer, W. A., "Carbon Nanotube Quantum Resistors," Science, 280, 1744-1746(1998). https://doi.org/10.1126/science.280.5370.1744
  15. Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y. H., Kim, S. G., Rinzler, A. G., Colbert, D. T., Scuseria, G. E., Tomanek, D., Fischer, J. E. and Smalley, R. E., "Crystalline Ropes of Metallic Carbon Nanotubes," Science, 273, 483-487(1996). https://doi.org/10.1126/science.273.5274.483
  16. Ajayan, P. M., "Nanotubes from Carbon," Chem. Rev., 99, 1787-1800(1999). https://doi.org/10.1021/cr970102g
  17. Popov, V. N., "Carbon Nanotubes: Properties and Applications," Mater. Sci. Eng. R Rep., 43, 61-102(2004). https://doi.org/10.1016/j.mser.2003.10.001
  18. Hone, J., Whitney, M., Piskoti, C. and Zettl, A., "Thermal Conductivity of Single-Walled Carbon Nanotubes," Phys. Rev. B, 59, R2514-R2516(1999). https://doi.org/10.1103/PhysRevB.59.R2514
  19. Park, S. and Ruoff, R. S., "Chemical Methods for the Production of Graphenes," Nat. Nanotechnol., 4, 217-224(2009). https://doi.org/10.1038/nnano.2009.58
  20. Geim, A. K. and Novoselov, K. S., "The Rise of Graphene," Nat. Mater., 6, 183-191(2007). https://doi.org/10.1038/nmat1849
  21. Ellmer, K., "Past Achievements and Future Challenges in the Development of Optically Transparent Electrodes," Nature Photon., 6, 809-817(2012). https://doi.org/10.1038/nphoton.2012.282
  22. Hu, L., Hecht, D. S. and Gruner, G., "Percolation in Transparent and Conducting Carbon Nanotube Networks," Nano Lett., 4, 2513-2517(2004). https://doi.org/10.1021/nl048435y
  23. Dan, B., Irvin, G. C. and Pasquali, M., "Ontinuous and Scalable Fabrication of Transparent Conducting Carbon Nanotube Films," ACS Nano, 3, 835-843(2009). https://doi.org/10.1021/nn8008307
  24. Nirmalraj, P. N., Lyons, P. E., De, S., Coleman, J. N. and Boland, J. J., "Electrical Conductivity in Single-Walled Carbon Nanotube Networks," Nano Lett., 9, 3890-3895(2009). https://doi.org/10.1021/nl9020914
  25. Coskun, S., Ates, E. S. and Unalan, H. E., "Optimization of Silver Nanowire Networks for Polymer Light Emitting Diode Electrodes," Nanotechnology, 24, 125202/1-8(2013). https://doi.org/10.1088/0957-4484/24/12/125202
  26. Zhao, J., Sun, H., Dai, S., Wang, Y. and Zhu, J. "Electrical Breakdown of Nanowires," Nano Lett., 11, 4647-1651(2011).
  27. Khaligh, H. H. and Goldthorpe, I. A. "Failure of Silver Nanowire Transparent Electrodes Under Current Flow," Nanoscale Res. Lett., 8, 235/1-6(2013). https://doi.org/10.1186/1556-276X-8-1
  28. Liu, Y., Chang, Q. and Huang, L., "Transparent, Flexible Conducting Graphene Hybrid Films with A Subpercolating Network of Silver Nanowires," J. Mater. Chem. C, 17, 2970-2974(2013).
  29. Ahn, Y., Jeong, Y. and Lee, Y., "Improved Thermal Oxidation Stability of Solution-Processable Silver Nanowire Transparent Electrode by Reduced Graphene Oxide," ACS Appl. Mater. Interfaces, 4, 6410-6414(2012). https://doi.org/10.1021/am301913w
  30. Tokuno, T., Nogi, M., Jiu, J. and Suganuma, K., "Hybrid Transparent Electrodes of Silver Nanowires and Carbon Nanotubes: A Low-Temperature Solution Process," Nanoscale Res. Lett., 7, 281/1-7(2012). https://doi.org/10.1186/1556-276X-7-1
  31. Lee, C. S., Yoo, J. E., Shin, K., Park C. O. and Bae, J., "Carbon Nanotube-Silver Nanowire Composite Networks On flexible Substrates: High Reliability and Application for Supercapacitor Electrodes," Phys. Status Solidi A, 211(12), 2890-2897(2014). https://doi.org/10.1002/pssa.201431538