DOI QR코드

DOI QR Code

A Study on the Applicability of the Hydraulic Test Method Performed at an underground Research Facility in Crystalline Rock

결정질 암반내 지하연구시설에서 수행한 현장수리시험법 적용성 연구

  • Received : 2020.03.20
  • Accepted : 2020.04.08
  • Published : 2020.04.28

Abstract

In this paper, the transmissivities obtained from the pulse test, the slug test and the constant head test were compared each other to assess an applicability and a reliability of the hydrogeological test method, which are commonly used to derive the hydrogeological properties of a crystalline rock at un underground research facility. When comparing the results of the pulse test and the slug test, the transmissivities were very similar in the entire test section of the medium. However, there was a little discrepancy in the results in the areas where the permeability is relatively high. The results of the constant head test on the same section showed the lower transmissivity than the results of the pulse test and the slug test on the highly permeable section. This difference in permeability was considered to be due to the difference in the radius of the hydraulic effect applied in each hydraulic test. When the heterogenetic distribution of fracture affects the hydrogeological properties on crystalline rock, it is believed that the hydrogeological characteristics can be explained through a constant head test or a constant flow rate test with a large hydraulic effective radius, as well as a pulse and a slug test that can identify hydrogeological properties in a relatively short time.

본 논문에서는 지하연구시설에서 결정질 암반의 수리지질특성을 도출하기 위해 일반적으로 수행하는 수리시험법의 적용 가능성 및 신뢰성을 평가할 목적으로, 펄스시험, 슬러그시험과 정압시험을 이용하여 각 시험 결과로부터 도출되는 투수량계수를 서로 비교해 보았다. 펄스시험과 슬러그시험의 결과를 비교해 볼 때, 매질의 투수성이 낮은 시험 구간에서는 투수량계수가 매우 유사하게 도출되었지만, 투수성이 비교적 큰 구간에서는 다소 차이를 보였다. 그리고 투수성이 큰 구간에서 정압시험 결과에 비해 순간수위변화시험의 결과가 다소 크게 나타났다. 이러한 투수성의 차이는 각 수리시험에서 적용되는 수리 영향 반경의 상이함에 기인한 것으로 판단된다. 비록 각각의 현장수리시험에서 도출되는 결과가 매질의 투수성을 동일하게 반영한다고 할 수는 없지만, 단열의 불균질한 분포가 투수성에 영향을 주는 결정질 암반에서의 수리지질특성을 도출할 때 수리영향반경이 큰 정압시험이나 정률시험뿐만 아니라 비교적 빠른 시간에 수리지질특성을 파악할 수 있는 슬러그시험과 펄스시험을 통해서도 매질의 수리지질특성을 설명할 수 있는 것으로 사료된다.

Keywords

References

  1. Almen K.L., Andersson J.E., Carlsson L., Hansson K. and Larsson N.A. (1986) Hydraulic testing in crystalline rock; A comparative study of single-hole test methods by Swedish Geological Company. SKB TR-86-27, Swedish Nuclear Fuel and Waste Management Co., 179p.
  2. Bouwer H. and Rice R.C. (1976) A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resources Research, v. 12(3), p.423-428. https://doi.org/10.1029/WR012i003p00423
  3. Cho W.J., Park J. H. and Kwon S.K. (2004) Investigation and evaluation of the site for the small scale underground research tunnel. KAERI/TR-2751-2004, Korea Atomic Energy Research Institute, 104p.
  4. Cho W.H., Baik M.H. and Park T.J (2017) Occurrence characteristics and existing forms of U-Th containing minerals in KAERI Underground Research Tunnel (KURT) granite. Econ. Environ. Geol., v.50(2), p.117-128. https://doi.org/10.9719/EEG.2017.50.2.117
  5. Choi J.H. (2019) Comparative analysis of the joint properties of Granite and Granitic Gneiss by depth. Econ. Environ. Geol., v.52(2), p.189-197. https://doi.org/10.9719/EEG.2019.52.2.189
  6. Cooper H. H., Bredehoeft J. D. and Papadopulos I. S. (1967) Response of a finite-diameter well to an instantaneous charge of water. Water Resources Research, v.3(1), p.263-269. https://doi.org/10.1029/WR003i001p00263
  7. Freeze R.A. and Cherry J.A. (1979) Groundwater. Prentice-Hall, Englewood Cliffs, New Jersey, 604p.
  8. Ham S.Y., Kim M.S., Sung I.H., Lee B.D. and Kim K.S. (2001) Hydraulic parameter estimation of a granite area using slug tests. The Journal of Engineering Geology, v.11(1), p.63-79.
  9. Han P.S. (2005) Korean Underground Research Facility (KURF) and its utilization programme. KAERI/TR-2969/2005, Korea Atomic Energy Research Institute, 77p.
  10. Jacob C.E. and Lohman S.W. (1952) Nonsteady flow to a well of constant drawdown in an extensive aquifer. Trans. Am. Geophys. Union, v.33, p.559-569. https://doi.org/10.1029/TR033i004p00559
  11. Jo Y.J., Lee J.Y., Jun S.C., Cheon J.Y. and Kwon H.P. (2010) Estimation of hydraulic parameters from slug, single well pumping and step-drawdown tests. The Journal of Engineering Geology, v.20(2), p.203-212.
  12. Jung J.G., Seo M.C., Kim K.S. and Hwang H.J. (1997) The Study on the structural geology and geothermal gradient around Yuseong hot spring area. Korean Society of Engineering Geology. v.7, p.173-189.
  13. Jung K.D. (2000) A study on the utilization of the underground space. M.S. Thesis, Han-Yang Univ., 144p.
  14. Kim G.Y., Lee J.Y., Kim K.S., Park J.H. and Bae D.S. (2015) Report on construction for the extended area of KURT. KAERI/TR-5920/2015, Korea Atomic Energy Research Institute, 189p.
  15. Kim K.S., Bae D.S. and Lee J.Y. (2013) Characteristics on geological structure and hydrogeology around the extended area at the design stage of KURT. KAERI/TR-4877/2013, Korea Atomic Energy Research Institute, 89p.
  16. Kwon J.S., Koh Y.K., Jung J.H., Lee J.K., Park K.W., Park N.C. and Kim H.C. (2018) Borehole drilling and hydrogeochemical field experiments for geochemical assessment of the KURT granitic environment. KAERI/TR-7379/2018, Korea Atomic Energy Research Institute, 70p.
  17. Lee J.K. and Baik M.H. (2009) Manufacture, installation and operation of an in-situ solute migration system in KAERI Underground Research Tunnel(KURT). KAERI/TR-3791/2009, Korea Atomic Energy Research Institute, 43p.
  18. Lee J.Y., Lee K.K., Chung H.J. and Bae G.O. (1999) Multiple slug and pumping tests for quality enhancement of hydraulic parameter estimates. Journal of the Korean Society of Groundwater Environment, v.6(1), p.14-22.
  19. Lee S.M., Kim H.S. and Na G.C. (1980) Explanatory text of the geological map of Daejeon. Korea Research Institute of Geoscience and Mineral Resources, 26p.
  20. Moye D. G. (1967) Diamond drilling for foundation exploration. Civil Eng. Trans., Inst. Eng. Australia, p.95-100.
  21. Neuman S.P. (2005) Trends, Prospects and challenges in quantifying flow and transport through fractured rocks. Hydrogeol. J., v.13(1), p.124-147. https://doi.org/10.1007/s10040-004-0397-2
  22. Park H.I., Lee J.D. and Jung J.G. (1977) Explanatory text of the geological map of Yuseong. Korea Research Institute of Geoscience and Mineral Resources, 21p.
  23. Park K.W., Ji S.H. and Ko N.Y. (2019) Assessment of hydrogeological characteristics at BDZ-1 borehole in KAERI Underground Research Tunnel(KURT). KAERI/TR-7750/2019, Korea Atomic Energy Research Institute, 84p.
  24. Park K.W., Ko N.Y. and Ji S.H. (2018) Construction of hydrogeological model for KURT site based on geological model. Econ. Environ. Geol., v.51(2), p.121-130. https://doi.org/10.9719/EEG.2018.51.2.121
  25. Park K.W., Koh Y.K., Kim K.S. and Choi J.W. (2009) Construction of the geological model around KURT area based on the surface investigations. Journal of Nuclear Fuel Cycle and Waste Technology, v.7(4), p.191-205 .
  26. Walter S., Arno T., Hansruedi F. and Hans-Jurg G. (2006) Geohydraulic tests in rock. 82p.
  27. Yoo C.S., Kim S.B., Bae G.J. and Shin H.S. (2006) Effect of tunneling and groundwater interaction on tunnel behavior. Tunneling Technology, v.7(2), p.97-107.