DOI QR코드

DOI QR Code

Adhesion Characteristics between Stamp and Polymer Materials Used in Thermal Nanoimprint Lithography

열 나노임프린트 리소그래피에서 사용되는 스탬프와 폴리머 재료 사이의 점착 특성

  • Kim Kwang-Seop (Dept. of Mechanical Engineering, Korea Advanced Institute of Science and Technology(KAIST)) ;
  • Kang Ji-Hoon (Dept. of Mechanical Engineering, Korea Advanced Institute of Science and Technology(KAIST)) ;
  • Kim Kyung-Woong (Dept. of Mechanical Engineering, Korea Advanced Institute of Science and Technology(KAIST))
  • 김광섭 (한국과학기술원 기계공학과) ;
  • 강지훈 (한국과학기술원 기계공학과) ;
  • 김경웅 (한국과학기술원 기계공학과)
  • Published : 2006.08.01

Abstract

In this paper, the adhesion characteristics between a fused silica without or with an anti-sticking layer and a thermoplastic polymer film used in thermal NIL were investigated experimentally in order to identify the release performance of the anti-sticking layer. The anti-sticking layers were derived from fluoroalkylsilanes, (1H, 1 H, 2H, 2H-perfluorooctyl)trichlorosilane ($F_{13}-OTS$) and (3, 3, 3-trifluoropropyl)trichlorosilane (FPTS), and coated on the silica surface in vapor phase. The commercial polymers, mr-I 7020 and 8020 (micro resist technology, GmbH), for thermal NIL were spin-coated on Si substrate with a rectangular island which was fabricated by conventional microfabrication process to achieve small contact area and easy alignment of flat contact sur- faces. Experimental conditions were similar to the process conditions of thermal NIL. When the polymer film on the island was separated from the silica surface after imprint process, the adhesion force between the silica surface and the polymer film was measured and the surfaces of the silica and the polymer film after the separation were observed. As a result, the anti-sticking layers remarkably reduced the adhesion force and the surface damage of polymer film and the chain length of silane affects the adhesion characteristics. The anti-sticking layers derived from FPTS and $F_{13}-OTS$ reduced the adhesion force per unit area to 38% and 16% of the silica sur-faces without an anti-sticking layer, respectively. The anti-sticking layer derived from $F_{13}-OTS$ was more effective to reduce the adhesion, while both of the anti-sticking layers prevented the surface damages of the polymer film. Finally, it is also found that the adhesion characteristics of mr-I 7020 and mr-I 8020 polymer films were similar with each other.

Keywords

References

  1. S. Y. Chou, P. R. Krauss and P. J. Renstrom, 'Imprint of sub-25 nm vias and trenches in polymers,' Appl. Phys. Lett., Vo1.67, No.21, pp.3114-3116, 1995 https://doi.org/10.1063/1.114851
  2. M. D. Austin, H. X. Ge, W. Wu, M. T. Li, Z. N. Yu, D. Wasserman, S. A. Lyon and S. Y. Chou, 'Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,' Appl. Phys. Lett., Vol.84, No.26, pp.5299-5301, 2004 https://doi.org/10.1063/1.1766071
  3. L. J. Guo, 'Recent progress in nanoimprint technology and its applications,' J. Phys. D : Appl. Phys., Vol.37, pp.R123-R141, 2004 https://doi.org/10.1088/0022-3727/37/11/R01
  4. D. S. Macintyre, Y. Chen, D. Gourlay, E. Boyd, D. Moran, X. Cao, K. Elgaid, C. R. Stanley, I. Thayne and S. Thoms, 'Nanoirnprint lithography process optimization for the fabrication of high electron mobility transistors,' J. Vac. Sci. Technol. B, Vol.21, No.6, pp.2783-2787, 2003 https://doi.org/10.1116/1.1629719
  5. W. Zhang and S. Y. Chou, 'Fabrication of 60-nm transistors on 4-in. wafer using nanoimprint at all lithography levels,' Appl. Phys. Lett., Vol.83, No.8, pp.1632-1634, 2003 https://doi.org/10.1063/1.1600505
  6. P. D. Ye, G. D. Wilk, E. E. Tois and J. J. Wang, 'Formation and characterization of nanometer scale metal-oxide-semiconductor structures on GaAs using low-temperature atomic layer deposition,' Appl. Phys. Lett., Vol.87, No.1, pp.13501-13503, 2005 https://doi.org/10.1063/1.1954902
  7. I. Puscasu, G. Boreman, R. C. Tiberio, D. Spencer and R. R. Krchnavek, 'Comparison of infrared frequency selective surfaces fabricated by direct-write electron-beam and bilayer nanoimprint lithographies,' J. Vac. Sci. Technol. B, Vol.18, No.6, pp.3578-3581, 2000 https://doi.org/10.1116/1.1319838
  8. S. W. Ahn, K. D. Lee, D. H. Kim and S. S. Lee, 'Polymeric wavelength filter based on a Bragg grating using nanoimprint technique,' IEEE Photon. Technol. Lett., Vol.17, No.10, pp.2122-2l24, 2005 https://doi.org/10.1109/LPT.2005.854404
  9. E. M. Arakcheeva, E. M. Tanklevskaya, S. I. Nesterov, M. V. Maksimov, S. A. Gurevich, J. Seekamp, and C. M. S. Torres, 'Fabrication of semiconductorand polymer-based photonic crystals using nanoimprint lithography,' Tech. Phys., Vol.50, No.8, pp.1043-1047, 2005 https://doi.org/10.1134/1.2014536
  10. X. Cheng, Y. T. Hong, J. Kanicki and L. J. Guo, 'High-resolution organic polymer light-emitting pixels fabricated by imprinting technique,' J. Vac. Sci. Technol. B, Vol.20, No.6, pp.2877-2880, 2002 https://doi.org/10.1116/1.1515307
  11. P. C. Kao, S. Y. Chu, T. Y. Chen, C. Y. Zhan, F. C. Hong, C. Y. Chang, L. C. Hsu, W. C. Liao and M. H. Hon, 'Fabrication of large-scaled organic light emitting devices on the flexible substrates using lowpressure imprinting lithography,' Elec. Dev., IEEE Transactions, Vol.52, No.8 pp.1 722-1726, 2005
  12. S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee and P. W. Yoon, 'Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,' Nanotechnology, Vo1.16, No.9, pp.1874-1877, 2005 https://doi.org/10.1088/0957-4484/16/9/076
  13. T. Ohtake, K. I. Nakamatsu, S. Matsui, H. Tabata and T. Kawai, 'DNA nanopatterning with self-organization by using nanoimprint,' J. Vac. Sci. Technol. B, Vo1.22, No.6, pp.3275-3278, 2004 https://doi.org/10.1116/1.1823438
  14. R. Bunk, P. Carlberg, A. Mansson, I. A. Nicholls, P. Omling, M. Sundberg, S. Ta gerud and L. Montelius, 'Guiding Molecular Motors with Nano-Imprinted Structures,' Jap. J Appl. Phys. Part 1, Vo1.44, No.5A, pp.3337-3340, 2005 https://doi.org/10.1143/JJAP.44.3337
  15. Y. Hirai, S. Yoshida and N. Takagi, 'Defect analysis in thermal nanoimprint lithography,' J Vac. Sci. Technol. B, Vol.21, No.6, pp.2765-2770, 2003 https://doi.org/10.1116/1.1629289
  16. Y. Hirai, S. Yoshida, N. Takagi, Y. Tanaka, H. Yabe, K. Sasaki, H. Sumitani and K. Yamamoto, 'High Aspect Pattern Fabrication by Nano Imprint Lithography Using Fine Diamond Mold,' Jap. J Appl. Phys. Part 1, Vo1.42, pp.3863-3866, 2003 https://doi.org/10.1143/JJAP.42.3863
  17. R. W. Jaszewski, H. Schift, P. Groning and G Margaritondo, 'Properties of thin anti-adhesive films used for the replication of microstructures in polymers,' Microelectron. Eng., Vo1.45, No.1-4, pp.381384, 1997
  18. M. Beck, M. Graczyk, I. Maximov, E. L. Sarwe, T. G. I. Ling, M. Keil and L. Montelius, 'Improving stamps for 10nm level wafer scale nanoimprint lithography,' Microelectron. Eng., Vol.61-62, pp.441-448, 2002 https://doi.org/10.1016/S0167-9317(02)00464-1
  19. J. K. Chen, F. H. Ko, K. F. Hsieh, C. T. Chou and F. C. Chang, 'Effect of fluoroalkyl substituents on the reactions of alkylchlorosilanes with mold surfaces for nanoimprint lithography,' J Vac. Sci. Technol. B, Vo1.22, No.6, pp.3233-3241, 2004 https://doi.org/10.1116/1.1815305
  20. S. G Park, H. Schift, C. Padeste, B. Schnyder, R. Katz and J. Gobrecht, 'Anti-adhesive layers on nickel stamps for nanoimprint lithography,' Microelectron. Eng., Vol.73-74, pp.196-201, 2004 https://doi.org/10.1016/S0167-9317(04)00098-X
  21. H. Schift, S. Saxer, S. G Park, C. Padeste, U. Pieles and J. Gobrecht, 'Controlled co-evaporation of silanes for nanoimprint stamps,' Nanotechnology, Vo1.16, pp.S171-S175, 2005 https://doi.org/10.1088/0957-4484/16/5/007
  22. J. Tallal, M. Gordon, K. Berton, A. L. Charley and D. Peyrade, 'AFM characterization of anti-sticking layers used in nanoimprint,' Microelectron. Eng., Vo1.83, pp.851-854, 2006 https://doi.org/10.1016/j.mee.2006.01.011
  23. J. Taniguchi, T. Kawasaki, Y. Tokano, Y. Kogo, I. Miyamoto, M. Komuro, H. Hiroshima, N. Sakai and K. Tada, 'Measurement of Adhesive Force Between Mold and Photocurable Resin in Imprint Technology,' Jap. J Appl. Phys. Part 1, Vol. 41, pp.4194-4197, 2002 https://doi.org/10.1143/JJAP.41.4194
  24. N. Sakai, J. Taniguchi, K. Kawaguchi, M. Ohtaguchi and T. Hirasawa, 'Investigation of application availability of UV-NIL by using several types of photo-curable resin,' J. Photopolym. Sci. Technol., Vo1.18, No.4, pp.531-536, 2005 https://doi.org/10.2494/photopolymer.18.531
  25. A. Ulman, 'Formation and structure of self-assembled monolayers,' Chem. Rev., Vo1.96 pp.1533-1554, 1996 https://doi.org/10.1021/cr9502357
  26. F. Reuther, 'Advanced polymers and resists-A key to the development of nanoimprint lithography,' J. Photopolym. Sci. Technol., Vo1.18, No.4, pp.525-530, 2005 https://doi.org/10.2494/photopolymer.18.525
  27. L. J. Heyderman, H. Schift, C. David, J. Gobrecht and T. Schweizer, 'Flow behaviour of thin polymer films used for hot embossing lithography,' Microelectron. Engineering, Vo1.54, pp.229-245, 2000 https://doi.org/10.1016/S0167-9317(00)00414-7