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Abstract: Super-resolution aims to produce a high-resolution image from a set alone or more low-resolution 

images by recovering or inventing plausible high-frequency image content. Typical approach is try to 

reconstruct a high-resolution image using the sub-pixel displacements of several low-resolution images, usually 

regularized by a generic smoothness prior over the high-resolution image space. Throughout this paper, a 

higher resolution image is defined as an image with more resolving power. 
Super Resolution consists of two main steps: image registration and image reconstruction. Precise alignment of 

the input images is one of the important terms. In this paper, we have implemented and tested motion estimation 

algorithms and image reconstruction algorithms in spatial domain as well as in frequency domain in order to 

study their analytical parameters and a high resolution image is created by using bicubic interpolation over the 

prealiased images. Also the experimental as well as analytical results of this paper are successful in spatial 

domain as per the application of image superresolution. 

Keywords: Superresolution, Image registration, Image Reconstruction. 

 

I. Introduction 
 Cambridge International Advanced Learner‟s dictionary defines ‘Superresolution’ as ‘the ability of a 

microscope, or a television or computer screen, to show things clearly and with a lot of detail:’ 

Superresolution refers to the reconstruction methods that can be applied to obtain an image with higher spatial 

resolution through the use of several lower-resolution set of (LR) images. Super-Resolution (SR) is a process by 

which a number of LR images are combined into a single HR image, which has a greater resolving power. SR is 

not only useful to enhance the resolving power of an image; it can also, to some extent, reduce the aliasing 

noticeably.  

 On one hand, increasing the number of pixels on a chip via reducing the pixel size is limited by the 

existence of shot noise. On the other hand, increasing the chip size is deemed ineffective due to the existence of 

a large capacitance that slows the charge-transfer rate[ 5]. Super resolution (SR) provides cost effective 

alternatives for boosting the quality of the image without additional hardware cost. 

The idea of superresolution was first introduced in 1984 by Tsai and Huang [1] formulate if same image 
restoration of band limited signals based on the spatial aliasing effect.  

 In the literature, super-resolution is treated as an inverse problem, where the high-quality and high-

resolution image to be obtained is linked to the under sampled images by a series of operators such as warping, 

blur, decimation and additive noise as per the work presented in projection onto convex sets (POCS) approach, 

iterative back-projection maximum a posteriori (MAP) estimation, etc. [6]. 

 In almost all above methods, in order for the high-resolution image to be reconstructed, the blur and the 

motion operators should be known in advance. Although the motion parameters are estimated a priori to some 

extent, as known to the designer, the blur operator is just assumed to be in hand. But this is mostly impossible in 

practice. Either the blur parameters must be estimated or the high-resolution image must be constructed without 

the need for the blur. 

 Most superresolution methods are composed of two main steps: first all the images are aligned in the 
same coordinate system in the registration step, and then a high-resolution image is reconstructed from the 

irregular set of samples. In this second step, the camera point spread function is often taken into account. Super-

Resolution refers to recovering high resolution data from images that due to mis-focus, compression or other 

forms of distortion have lost the data that were originally embedded in the higher frequencies of the image, and 

hence are now given as low resolution images.  

 The focus of this research paper mainly on based on the two major, and to some extent, independent 

challenges in superresolution imaging. First, the difference between the low resolution input images needs to be 

known precisely. This difference can have many origins: camera motion, change of focus, a combination of 

these two, and so forth. We will consider images that differ by a planar motion. Therefore, the first challenge 

corresponds to having a precise knowledge of the motion prameters. An error in the motion estimation translates 
almost directly in to a degradation of the resulting high resolution image. The artifacts caused by an incorrectly 
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aligned image are visually much more disturbing than the blurring effect from interpolating only one image. The 

second challenge is to apply the information obtained from the different registered images to their construction 

of a sharp high resolution image. Thus, no point spread function (PSF) is taken in to account in the 

reconstruction.  

 In this paper, we have implemented image registration algorithm such as Vandewalle et al in frequency 
domain and Keren et al in spatial domain for motion estimation analysis which gives the rotaion as well as sub 

pixel shift of low resolution images and image reconstruction algorithm such as interpolation, iterative 

backpropogation and robust super resolution algorithm. 

The superresolution algorithm we have tested in this paper reconstructs an image with almost respective 

resolution factor in both dimensions from four aliased images. The four low-resolution images are necessarily 

under sampled. 

 We compare our approach in a simulation to other spatial domain and frequency domain registration 

algorithms along with reconstruction algorithms. We find that spatial domain algorithm can better estimate shift 

and rotation parameters than the other methods, in particular, when some strong directionality is present in the 

image.  

 

II. Superresolution Model 
 The goal of SuperResolution is to increase the resolution of an image by using many images very 

similar to it. Note that in this paper, a higher resolution image is not only an image that has more pixels, but is 

an image that has a greater resolution power (i.e. more details are visible). From these similar pictures of the 

same scene, where the camera has moved very slightly, we can gather all the information necessary that will in 

turn enable us to reconstruct a higher resolution image. 

 Fig. 1 illustrates the image degradation model. In order to treat the most general case, it is assumed that 

each measurement is the result of different blur, noise, motion, and decimation parameters.Translating the above 

description to an analytical model, We get 

 
Fig. 1:      Degradation Model. 

 
 The nk parameter represents the additive gaussian noise.The above restoration problem can be 

formulated in terms of the following equation: 

pkfornxHy kk  1 .                                                  (1) 

 Where, 
kk MDBH  . 

 The solution to the above discussed problem can be illustrated form fig. 2. 

 

 
Fig. 2: Image Restoration process for Superresolution. 

 

 SuperResolution consists of two main steps: image registration and image reconstruction. The first 

estimates the motion between the different LR pictures, while the latter uses this information in order to 

reconstruct the high resolution image by using image fusion and image deblurring technique as shown in fig. 2. 

 

III. Image Registration 
 A possible application of the proposed image registration algorithm is that of a user holding his digital 

camera in his hands while manually or automatically taking a series of four shots of a scene within a short 

period of time. The small vibrations of the user‟s hands during image capture are sufficient to reconstruct a high 

resolution image.  
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As per the superresolution imaging analysis is concerned, there are two main domain i.e. frequency domain and 

spatial domain approach for image registration. 

 In our experiments, we found that the results of the spatial domain algorithm (Keren at al.) are very 

much better in visual quality as well as in analytical parameter also than the frequency domain algorithm 

(Vandewalle et al.), which typically failed to adequately register all four images.Super-resolution restoration is 

critically dependent on accurate, sub-pixel motion estimation. 

 In the early stages, most of the research work is carried out under frequency domain approach but as 
more general degradation models were considered; later research has tended to concentrate almost exclusively 

on spatial domain formulations. 

By the nature of frequency domain, fourier transform methods are limited to only global motion models. 

 

3.1 Motion Estimation 

Motion estimation techniques should only return the translation and rotation information, in the following 

format: 

[Delta est, phi est]= method (...) 

 
Fig.3: Fundamental Motion Estimation Model 

 

 Intuitively, each LR-observed image represents a subsampled (i.e. aliased) version of the original 

scene.Due to the subpixel shifts, however, each observed image contains complementary information. With 

exact knowledge of the shifts, the observed image scan be combined to remove the aliasing and generate a 

higher resolution image. If we assume that the resolution of this HR image is such that the Nyquist sampling 

criterion is satisfied, this HR image then represents an accurate representation of the original (continuous) scene. 
 

 
Fig. 4: (a)-(d) Relationship between LR images; (e) irregularly sampled HR image;                           

       (f) the regularly sampled HR image. 
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Fig.4 (a)-(d) represents the relationship between the four undersampled LR images and (e) represents the 

irregularly sampled HR image from four LR while (f) represent the uniformly sampled HR image. 

 

3.1.2 Frequency Domain 

 Most of the frequency domain registration methods are based on the fact of two shifted images differ in 

frequency domain by a phase shift only, which can be found from phase correlation methods. Basically, we have 
tested a frequency domain vandewalle et al. algorithm for planar motion estimation in which a shift in the space 

domain is translated into a linear shift in the phase of the image's Fourier Transform. Similarly, a rotation in the 

space domain is visible in the amplitude of the Fourier Transform. Hence, the Vandewalle et al. motion 

estimation algorithm computes the images' Fourier Transforms and determines the 1-D shifts in both their 

amplitudes and phases. One advantage of this method is that it discards high-frequency components, where 

aliasing may have occurred, in order to be more robust. Especially planar motion parallel to the image plane is 

allowed. The motion can be described as a function of three parameters: horizontal and vertical shifts, Δx1 and 

Δx2, and a planar rotation angle    separately. 

Assume we have a reference signal f1(x) and its shifted and rotated version f2(x) as shown in (2): 
 

))(()( 12 xxRfxf                                                        (2)
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Where, F2(u) is fourier transform of f2 (x) and the coordinate transformation x’= x +Δx as shown in (4).After 

another transformation we get, 

 

))(()( 12 uRFuF 
                                                            (4)

 
 Where, |F2 (u)| represent a rotated version of |F1(u)| over the same angle θ . Thus, |F2(u)| and |F1(u)| 

mostly depends on the rotation angle θ . So, in this algorithm first of all rotation angle is estimated. 

The rotation angle between |F1(u)| and |F2(u)| can be computed as the angle θ for which the Fourier transform of 

the reference image |F1(u)| and the rotated Fourier transform of the image to be registered |F2(Rθu)| have a 

maximum correlation. But for mainly the low frequencies which generally contain most of the energy introduces 

large approximation errors. And mostly fails to obtain rotation angle accurately for most of the images as shown 

in table.  

 A shift estimation parameter Δx can be computed as the linear phase difference between F1 (u) and F2 

(u). One advantage of this algorithm is that the high frequency noise component is removed along with aliasing 

effect.

 

As per the experiments, result from this frequency domain algorithm is worse than that of spatial domain Keren 

et al. algorithm. This algorithm is applicable if and only if some directionality is present in the image. 

 

3.1.3 Spatial Domain 

 Spatial domain methods generally allow for more general motion models, such as homographies. They 

can be based on the whole image or on a set of selected corresponding feature vectors, as discussed es in their 

RANSAC algorithm [15]. In this paper, we have tested a Keren ET tal. Spatial domain algorithm for motion 

estimation estimation which shows a very good observation as well as visual results as shown in table. Keren et 
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al is an iterative planar motion estimation algorithm based on Taylor expansions. A pyramidal scheme is used to 

increase the precision for large motion parameters. 

 To obtain an estimate of HR image, from the spatio temporal relationship of the HR and LR sequences 

need to be modeled and cast within the Bayesian framework. This mathematical Bayesian approximation is a 

very much accurate technique due to which in general spatial domain is preferred for hyper spectral image 

restoration applications.   

 Thus, in this modeling of SR technique HR images fk and motion vector d are treated as a samples of 
random fields, with corresponding prior distribution that models our knowledge about the nature of the original 

HR image and motion vector.  

 The observation o which is a function of fk and d is also treated as a sample of random field with 

corresponding conditional distribution that models the algorithm to process to obtain o from fk and d.  

The joint distribution modeling the relationship between the observed data and the unknown quantities of the SR 

problem becomes 

),|(),()|,( dfkoPdfkPodfP k 
                                    (5)

 

),|( dfkoP Represents the likelihood of the observation from (5). The Bayesian inference modeling is 

performed using the posterior                                                                      
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Depending on the prior and condition probability density functions (pdf), it may be difficult to find out 

analytical solution for (7) and (9), so numerical solutions are needed. 

 According to the MAP estimator, the additive noise, the measurements, and the ideal image are all 

assumed stochastic signals. Bayesian approach provides a flexible and convenient way to model a priori 

knowledge concerning solution. Even with the numerical solutions, the major problem in the optimization is the 

simultaneous estimation of the variables fk and d. 

The HR image fk is then estimated by assuming that displacement estimates are exact. 
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 From (10), the iteration index q is then set to q+1 and the solution in eq. are found again and again till 

the convergence occurs. In order to obtain an estimate of HR image the error el,k   l = 1, 2, 3,……….., L in the 

formation model below is minimized. 

gl = Al .Hl. C(dl,k) fk + el,k           l = 1, 2, 3, ……, L.              (11) 

 The downsampling factor Al, the blur matrix Hl and C(dl,k) the motion compensation matrix that rotate 

the observed LR image gl to the HR image fk as shown in (11). 

Most of the HR motion estimation methods are used for uncompressed LR observation (g1, g2, g3, ……, gL), 

first, interpolating to obtain u , an estimate of the original HR sequence f and then find the displacement vector    

dl,k (x, y)   satisfying (12) 

 ),(),,(),( ,, yxdyyxdxuyxu y

kl

x

klkl 
                                                 (12)

 

  There are different methods to reconstruct u. Most HR motion estimation methods to estimate dl,k  from 

the unsampled sequence u, particularly those derived in frequency (fourier) domain, are based on the assumption 

of purely translational image motion. 

This translation motion model corresponds to  

1),(, pyxd x

kl      And     2),(, pyxd y

kl  . 

either for all pixels in the lth image or for pixels within a given block or region in that image. Keren et al method 

is used for estimating translation motion model. The next level of complexity in modeling the image motion is 
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to assume that images ul and uk (or regions within them) as shown in (13) are related by a horizontal shift „a’, a 

vertical shift ‘b’ and a rotation angle „θ’ around the origin  

)sincossincos(),( bxyayxuyxu kl  
                           

(13) 

 The estimation of the rotation angle and the translation is modeled using an affine transformation (of 

which translation, rotation and scaling are particular cases). 

),(),( feydxcbyaxuyxu kl 
                                                     (14)

 

 Where, a, b, c, d, e and f are the parameters to be estimated from (14). This model has been used in SR 

problems, for instance, in bilinear transformation. 

),(),( hgxyfyexdcxybyaxuyxu kl 
                      (15) 

 Where, a, b, c, d, e, f, g and h are the parameters to be estimated from (15). 

 

Then the affine transformation from (15) using warp 
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 With  tfedcbap 11 
from (18).

 

 The vector p can be region dependant or pixel dependant. We denote by B the image region where p is 

assumed to be a constant. 

  
 However, this algorithm, do not requires any directionalities should present in the images. A robust 

search procedure such as the random sample consensus (RANSAC) spatial domain algorithm which is used for 

the estimation of the parameters of a geometric transformation by automatic detection and image features with 

subpixel accuracy which returns a highly accurate estimate of the transformation. When geometric 

transformation is planar homography which is given as a plane projective transformation. But this algorithm is 

not useful for video sequence estimation.  

 

IV. Image Reconstruction 
 To reconstruct the high-resolution image, we apply bicubic interpolation on a high-resolution grid. The 
super-resolution algorithm we propose reconstructs an image with almost double resolution in both dimensions 

from four aliased images. The four low-resolution images are necessarily under sampled.  

In this paper, we have tested two algorithms for image reconstruction i.e. iterative backprojection and robust 

superresolution.   

 The idea behind Iterated Back Projection [6] is to start with a rough estimation of the HR image, and 

iteratively add to it a "gradient" image, which is nothing else than the sum of the errors between each LR image 

and the estimated HR image that went through the appropriate transforms (given by the motion estimates).   

Robust Super Resolution [12] is a more robust version of the above Iterated Back Projection. The only 

difference resides in the computation of the gradient, which is not given by the sum of all errors, but by the 

median of all errors. This brings robustness against outliners in the LR images. Zomet et al.[11] improved the 

results obtained with typical iterative back projection algorithms by taking the median of the errors in the 

different backprojected images. This proved to be more robust in the presence of outliers. Farsiu et al. [12] 

proposed a new and robust super-resolution algorithm. An optical low pass filter is applied in order to reduce 

high frequency noise component, blur and aliasing effect during image restoration process.  

The complete image registration and image reconstruction process is carried out by multiplying tuky window 

which is one of the digital filter reduces the noise component from the images.  

 

V. Experimental Analysis 
 The camera was held manually in approximately the same position while taking the pictures, which 

caused small shifts and rotations between the images. Images are captures by using low resolution mobile 

cameras. Aliasing is present in the high frequency regions of the images. The different registration algorithms in 

frequency domain such as Vandewalle algorithm and in spatial domain such as Keren algorithm are then applied 

to these images and a high resolution image is reconstructed by using iterative backpropogation (IBP) algorithm 

and using robust superresolution (RSR) algorithm. 

 Because the original images are already relatively large, the required additional upsampling and 

interpolation require too much memory to be performed on a regular computer. The upsampling is therefore is 

limited in this case and the shifts are computed upto pixel level. Because the exact motion parameters are 
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unknown, it is only possible to compare visually the different reconstructed images. Most aliasing has been 

removed in both reconstructed images.  

Testing and implementation of the image registration and image reconstruction algorithms for superresolution 

applications are performed under MATLAB environment using various commands from Image Processing 

Toolbox. 

 Fig. 6 shows the original low resolution Alternera (a soybean leaf disease) frames with [64x64] 
resolution. Original frame is interpolated by factor of 4. 

In this case we have applied frequency domain i.e. Vandewalle motion estimation algorithm. Fig. 6 (a) shows 

the result for iterative backpropogation (IBP) algorithm and Fig. 6 (b) shows the for robust superresolution 

(RSR) algorithm. Secondly, we have applied spatial domain i.e. Keren motion estimation algorithm. Fig. 6 (c) 

shows the result for iterative backpropogation (IBP) algorithm and Fig. 6 (d) shows the result for robust 

superresolution (RSR) algorithm. The final reconstructed image resolution is [256x256].  

Fig. 7 shows the original low resolution Soybean Looper (a soybean leaf disease) frames with [64x64] 

resolution. Original frame is interpolated by factor of 4. 

 In this case we have applied frequency domain i.e. Vandewalle motion estimation algorithm. Fig. 7 (a) 

shows the result for iterative backpropogation (IBP) algorithm and Fig. 7 (b) shows the for robust 

superresolution (RSR) algorithm. Secondly, we have applied spatial domain i.e. Keren motion estimation 
algorithm. Fig. 7 (c) shows the result for iterative backpropogation (IBP) algorithm and Fig. 7 (d) shows the 

result for robust superresolution (RSR) algorithm. The final reconstructed image resolution is [256x256]. 

Fig. 8 shows the gray scale Lenna image with low resolution frames with [128x128] resolution. Original frame 

is interpolated by factor of 3. 

 Initially, we have applied frequency domain i.e. Vandewalle motion estimation algorithm. Fig. 8 (a) 

shows the result for iterative backpropogation (IBP) algorithm and Fig. 8 (b) shows the for robust 

superresolution (RSR) algorithm. At the same time same image frames we have applied for spatial domain i.e. 

Keren motion estimation algorithm. Fig. 8 (c) shows the result for iterative backpropogation (IBP) algorithm 

and Fig. 8 (d) shows the result for robust superresolution (RSR) algorithm. The final reconstructed image 

resolution is [384x384]. 

 Fig. 9 shows the original low resolution Ear Warm (a soybean leaf disease) frames with [64x64] 

resolution. Original frame is interpolated by factor of 2. 
In this case, also, we have applied frequency domain i.e. Vandewalle motion estimation algorithm. Fig. 9 (a) 

shows the result for iterative backpropogation (IBP) algorithm and  Fig. 9 (b)  shows the for robust 

superresolution (RSR) algorithm. Secondly, we have applied spatial domain i.e. Keren motion estimation 

algorithm. Fig. 9 (c) shows the result for iterative backpropogation (IBP) algorithm and Fig. 9 (d) shows the 

result for robust superresolution (RSR) algorithm. The final reconstructed image resolution is [128x128]. 

From all the above experimental results, we can conclude that though the resolution of the original low 

resolution fames are increased in frequency domain but visual results gets detiorated as shown in Fig. 5(a), Fig. 

7(a) and Fig. 8(a) as compared with image reconstruction using spatial domain approach.  

 Again, the image reconstruction technique is concerned, visual observation results using robust 

Superresolution (RSR) Reconstruction are very much better than Iterative Backpropogation (IBP) reconstruction 

techniques in their respective frequency domain (Vandewalle estimation) and spatial domain (Keren estimation) 
approach. 

  

VI. Experimental Result 

 

    
 

Fig.6: Alterneria: original LR frames [64x64] 

 

Interpolating Factor =4 
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Frequency Domain [Vandewalle Estimation & Reconstruction]    [256x256] 

  
(a)IBP                              (b)RSR 

 

Spatial Domain [Keren Estimation & Reconstruction]          [256x256] 

                                                                                        
(c) IBP                                  (d)RSR 

 

 

    
Fig. 7 : Soybean Looper Original Frame Size [64x64] 

Interpolating Factor = 4 

 
Frequency Domain [Vandewalle Estimation & Reconstruction] [256x256] 

    
 (a)IBP                                          (b)RSR 

 

Spatial  Domain [Keren Estimation & Reconstruction]  [256x256] 

  
(a)IBP                                (b)RSR 
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Fig. 8:  Lena image. Original Frame size [128x128] 

Interpolating Factor = 3 
 

Frequency Domain [Vandewalle Estimation & Reconstruction]             [384x384] 

   
(c)IBP                                      (d)RSR 

 

patial  Domain [Keren Estimation & Reconstruction]             [384x384] 

  
(a)IBP                                (b)RSR  

 

    
Fig. 9: Ear Warm. Original LR frame [64 x64] 

Interpolating Factor 2 

 

Frequency Domain [Vandewalle Estimation & Reconstruction [128x128] 

  
(a)IBP                                          (b)RSR 

Spatial Domain [Keren Estimation & Reconstruction [128x128] 

   
(a)IBP                                          (b)RSR 
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Table 2: Frequency Domain (Vandewalle Estimation) 

 

 

 

 
 

 

 

 

 

Table 3: Spatial Domain (Keren Estimation) 

 

 

 

 

 

 

 

 

 

Table 4: Frequency Domain Vandewalle Image Reconstruction using Iterative Backpropogation (IBP) and 
Robust SuperResoluton (RSR) algorithm with interpolating factor. 

 

Table 5:  Spatial Domain Keren Image Reconstruction using Iterative Backpropogation (IBP) and Robust 

SuperResoluton (RSR) algorithm with interpolating factor. 

 

 Table II shows the tabulated result of average rotation and average subpixel shift estimation for 
frequency domain approach using Vandewalle estimation algorithm and Table III shows the tabulated result of 

average rotation and average subpixel shift estimation for spatial domain approach using Keren estimation 

algorithm. Frequency domain approach using Vandewalle estimation algorithm mostly fails to represent the 

exact and proper estimation of average rotation of low resolution frames of the input images as compared with 

spatial domain approach using Keren estimation algorithm. But on the other side, average shift (horizontal and 

vertical) estimation shows nearly the same result for frequency domain as well as spatial domain estimation 

technique.    

 Table IV and Table V shows the tabulated result for image reconstruction using Iterative 

Backpropogation (IBP) and Robust Superresolution (RSR) techniques in frequency domain and spatial domain, 

respectively. From both the table, we observe that the number of iterations required for image reconstruction 

process using iterative backpropogation (IBP) and robust superresolution (RSR) techniques mostly depends on 
interpolating factor either for frequency domain or for spatial domain approach. From this we get the idea about 

interpolating factor that if the interpolating factor is high, it requires somewhat more iterations and much more 

time for processing.  

 Table IV and Table V also shows the very good error rate estimation for iterative backpropogation 

(IBP) as well as robust superresolution (RSR) image reconstruction techniques for frequency domain 

(Vandewalle estimation) and for spatial domain (Keren estimation) algorithm. But here for some image 

superresolution process, the number of iterations and error rate are much smaller either for frequency domain 

(Vandewalle et al.) or for spatial domain (Keren et al.). The last column of both the tables indicates the 

LR Images (x4) 

Avg. 

Rotation 

Avg.   

subpixel Shift 

µɵ  µx µy 

Alterneria 0.06344 0.16957 0.30668 

Ear Warm 0.2170 0.3465 0.54033 

Soyabean Looper 0.30154 0.3292 0.7372 

Lena 0.38679 0.33558 0.36678 

LR Images (x4) 

Avg. 

Rotation 

Avg. 

subpixel Shift 

µɵ  µx µy 

Alterneria -0.0666 0.53926 0.26139 

Ear Warm 0 0.40238 0.6310 

Soyabean Looper -0.03333 0.4015 0.808021 

Lena 0 0.55464 0.41487 

LR  Images (x4) 
Facto

r 

IBP RSR Enhanced 

Resolution Iterations Errors Iterations Errors 

Alterneria           (64x 64) 4 11 0.0565 14 0.02063 [256x256] 

Ear Warm       (64 x 64) 2 40 0.0671 33 0.06159 [128x128] 

Soyabean Looper(64x64) 4 15 0.0201 15 0.07636 [256x256] 

Lena              (128 x128) 3 57 0.0265 50 0.0014 [384x384] 

LR  Images (x4) Factor 
IBP RSR Enhance 

Resolution Iterations Errors Iterations Errors 

Alterneria  (64 x 64) 4 13 0.0392 18 0.00824 [256x256] 

Ear Warm (64 x 64) 2 16 0.0617 26 0.06452 [128x128] 

Soyabean Looper (64 x64) 4 100 0.0226 10 0.0619 [256x256] 

Lena        (128 x 128) 3 10 0.0638 15 0.0410 [384x384] 
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enhanced resolution of the LR frames with respect to their interpolating factor.Both the reconstruction domains 

are applicable either for gray level images or for color images. 

 

VII. Conclusion And Future Scope 

 Through this research paper, we have reconstructed a superresolution process from a set of LR images 

captured by low cost low resolution mobile or digital camera and recovered a plausible high frequency image 

contents from it. Spatial domain analysis using Keren estimation shows very good observational as well as well 

analytical result. The reconstructed image through spatial domain having more resolving power. Due to this high 

resolving imaging power, aliasing ambiguity gets eliminated from LR subpixel displacement frames. As that of 

frequency domain, here in spatial domain there is no requirement of directionality present in the LR frames. 

Here we can reconstruct superresolution of either gray level or color images also. 

In future direction, for high resolution image feature extraction and classification using classifier under spatial 

domain superresolution tool is the prime aspect. Therefore, this spatial domain superresolution is applicable for 

agricultural images, hyper spectral satellite images, biomedical images, biometric images also.  
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