Abstract

This paper considers continuously differentiable functions of two vector variables that have (possibly a continuum of) min-max saddle points. We study the asymptotic convergence properties of the associated saddle-point dynamics (gradient descent in the first variable and gradient ascent in the second one). We identify a suite of complementary conditions under which the set of saddle points is asymptotically stable under the saddle-point dynamics. Our first set of results is based on the convexity-concavity of the function defining the saddle-point dynamics to establish the convergence guarantees. For functions that do not enjoy this feature, our second set of results relies on properties of the linearization of the dynamics, the function along the proximal normals to the saddle set, and the linearity of the function in one variable. We also provide global versions of the asymptotic convergence results. Various examples illustrate our discussion.

Keywords

  1. saddle-point dynamics
  2. asymptotic convergence
  3. convex-concave functions
  4. proximal calculus
  5. center manifold theory
  6. nonsmooth dynamics

MSC codes

  1. 34A34
  2. 34D05
  3. 34D23
  4. 34D35
  5. 37L10

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
P.-A. Absil and K. Kurdyka, On the stable equilibrium points of gradient systems, Systems Control Lett., 55 (2006), pp. 573--577, https://doi.org/10.1016/j.sysconle.2006.01.002.
2.
K. Arrow, L. Hurwitz, and H. Uzawa, Studies in Linear and Non-linear Programming, Stanford University Press, Stanford, CA, 1958.
3.
T. Başar and G. J. Olsder, Dynamic Noncooperative Game Theory, 2nd ed., Classics Appl. Math. 23, SIAM, Philadelphia, 1999, https://doi.org/10.1137/1.9781611971132.
4.
D. S. Bernstein, Matrix Mathematics, Princeton University Press, Princeton, NJ, 2005.
5.
S. P. Bhat and D. S. Bernstein, Nontangency-based Lyapunov tests for convergence and stability in systems having a continuum of equilibria, SIAM J. Control Optim., 42 (2003), pp. 1745--1775, https://doi.org/10.1137/S0363012902407119.
6.
S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, New York, 2004.
7.
J. Carr, Applications of Centre Manifold Theory, Springer-Verlag, New York, Berlin, 1982, https://doi.org/10.1007/978-1-4612-5929-9.
8.
A. Cherukuri and J. Cortés, Asymptotic stability of saddle points under the saddle-point dynamics, in American Control Conference (ACC 2015), Chicago, IL, 2015, pp. 2020--2025.
9.
A. Cherukuri, E. Mallada, and J. Cortés, Asymptotic convergence of primal-dual dynamics, Systems Control Lett., 87 (2016), pp. 10--15, https://doi.org/10.1016/j.sysconle.2015.10.006.
10.
F. H. Clarke, Optimization and Nonsmooth Analysis, Classics Appl. Math. 5, SIAM, Philadelphia, 1990, https://doi.org/10.1137/1.9781611971309.
11.
F. H. Clarke, Y. S. Ledyaev, R. J. Stern, and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Grad. Texts in Math. 178, Springer-Verlag, New York, 1998, https://doi.org/10.1007/b97650.
12.
J. Cortés, Discontinuous dynamical systems: A tutorial on solutions, nonsmooth analysis, and stability, IEEE Control Syst. Mag., 28 (2008), pp. 36--73, https://doi.org/10.1109/MCS.2008.919306.
13.
R. Dorfman, P. A. Samuelson, and R. Solow, Linear Programming and Economic Analysis, McGraw-Hill, New York, Toronto, London, 1958.
14.
G. Droge and M. Egerstedt, Proportional integral distributed optimization for dynamic network topologies, in American Control Conference (ACC 2014), Portland, OR, 2014, pp. 3621--3626.
15.
J. Dugundji, Topology, Allyn and Bacon, Boston, MA, 1966.
16.
H. B. Durr and C. Ebenbauer, A smooth vector field for saddle point problems, in Proceedings of the IEEE Conference on Decision and Control, Orlando, FL, 2011, pp. 4654--4660.
17.
D. Feijer and F. Paganini, Stability of primal-dual gradient dynamics and applications to network optimization, Automatica J. IFAC, 46 (2010), pp. 1974--1981, https://doi.org/10.1016/j.automatica.2010.08.011.
18.
B. Gharesifard and J. Cortés, Distributed continuous-time convex optimization on weight-balanced digraphs, IEEE Trans. Automat. Control, 59 (2014), pp. 781--786, https://doi.org/10.1109/TAC.2013.2278132.
19.
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math. 840, Springer-Verlag, Berlin, New York, 1981, https://doi.org/10.1007/BFb0089647.
20.
W. M. Hirsch and S. Smale, Differential Equations, Dynamical Systems and Linear Algebra, Academic Press, New York, London, 1974.
21.
T. Holding and I. Lestas, On the convergence of saddle points of concave-convex functions, the gradient method and emergence of oscillations, in Proceedings of the IEEE Conference on Decision and Control, Los Angeles, CA, 2014, pp. 1143--1148.
22.
M. V. Jovanovic, A note on strongly convex and quasiconvex functions, Math. Notes, 60 (1996), pp. 584--585.
23.
V. A. Kamenetskiy and Y. S. Pyatnitskiy, An iterative method of Lyapunov function construction for differential inclusions, Systems Control Lett., 8 (1987), pp. 445--451, https://doi.org/10.1016/0167-6911(87)90085-5.
24.
H. K. Khalil, Nonlinear Systems, 3rd ed., Prentice-Hall, Upper Saddle River, NJ, 2002.
25.
T. Kose, Solutions of saddle value problems by differential equations, Econometrica, 24 (1956), pp. 59--70.
26.
X. Ma and N. Elia, A distributed continuous-time gradient dynamics approach for the active power loss minimizations, in Proceedings of the 51st Annual Allerton Conference on Communication, Control, and Computing, Monticello, IL, IEEE, Piscataway, NJ, 2013, pp. 100--106.
27.
A. Nedić and A. Ozdaglar, Subgradient methods for saddle-point problems, J. Optim. Theory Appl., 142 (2009), pp. 205--228, https://doi.org/10.1007/s10957-009-9522-7.
28.
J. Palis, Jr., and W. de Melo, Geometric Theory of Dynamical Systems, Springer, New York, 1982, https://doi.org/10.1007/978-1-4612-5703-5.
29.
L. J. Ratliff, S. A. Burden, and S. S. Sastry, Characterization and computation of local Nash equilibrium in continuous games, in Proceedings of the 51st Annual Allerton Conference on Communication, Control, and Computing, Monticello, IL, IEEE, Piscataway, NJ, 2013.
30.
D. Richert and J. Cortés, Robust distributed linear programming, IEEE Trans. Automat. Control, 60 (2015), pp. 2567--2582, https://doi.org/10.1109/TAC.2015.2404451.
31.
D. Richert and J. Cortés, Distributed bargaining in dyadic-exchange networks, IEEE Trans. Control Netw. Syst., 3 (2016), pp. 310--321, https://doi.org/10.1109/TCNS.2015.2476215.
32.
H. H. Sohrab, Basic Real Analysis, Springer, New York, 2014, https://doi.org/10.1007/978-1-4939-1841-6.
33.
J. Wang and N. Elia, A control perspective for centralized and distributed convex optimization, in Proceedings of the IEEE Conference on Decision and Control, Orlando, FL, 2011, pp. 3800--3805.
34.
X. Zhang and A. Papachristodoulou, A real-time control framework for smart power networks with star topology, in American Control Conference (ACC 2013), Washington, DC, 2013, pp. 5062--5067.
35.
C. Zhao, U. Topcu, N. Li, and S. Low, Design and stability of load-side primary frequency control in power systems, IEEE Trans. Automat. Control, 59 (2014), pp. 1177--1189, https://doi.org/10.1109/TAC.2014.2298140.

Information & Authors

Information

Published In

cover image SIAM Journal on Control and Optimization
SIAM Journal on Control and Optimization
Pages: 486 - 511
ISSN (online): 1095-7138

History

Submitted: 19 June 2015
Accepted: 18 October 2016
Published online: 22 February 2017

Keywords

  1. saddle-point dynamics
  2. asymptotic convergence
  3. convex-concave functions
  4. proximal calculus
  5. center manifold theory
  6. nonsmooth dynamics

MSC codes

  1. 34A34
  2. 34D05
  3. 34D23
  4. 34D35
  5. 37L10

Authors

Affiliations

Funding Information

Natural Sciences and Engineering Research Council of Canada http://dx.doi.org/10.13039/501100000038
Division of Electrical, Communications and Cyber Systems http://dx.doi.org/10.13039/100000148 : 1307176

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media