Abstract

Using graphs to model pairwise relationships between entities is a ubiquitous framework for studying complex systems and data. Simplicial complexes extend this dyadic model of graphs to polyadic relationships and have emerged as a model for multinode relationships occurring in many complex systems. For instance, biological interactions occur between sets of molecules and communication systems include group messages that are not pairwise interactions. While Laplacian dynamics have been intensely studied for graphs, corresponding notions of Laplacian dynamics beyond the node-space have so far remained largely unexplored for simplicial complexes. In particular, diffusion processes such as random walks and their relationship to the graph Laplacian---which underpin many methods of network analysis, including centrality measures, community detection, and contagion models---lack a proper correspondence for general simplicial complexes.
Focusing on coupling between edges, we generalize the relationship between the normalized graph Laplacian and random walks on graphs by devising an appropriate normalization for the Hodge Laplacian---the generalization of the graph Laplacian for simplicial complexes---and relate this to a random walk on edges. Importantly, these random walks are intimately connected to the topology of the simplicial complex, just as random walks on graphs are related to the topology of the graph. This serves as a foundational step toward incorporating Laplacian-based analytics for higher-order interactions. We demonstrate how to use these dynamics for data analytics that extract information about the edge-space of a simplicial complex that complements and extends graph-based analysis. Specifically, we use our normalized Hodge Laplacian to derive spectral embeddings for examining trajectory data of ocean drifters near Madagascar and also develop a generalization of personalized PageRank for the edge-space of simplicial complexes to analyze a book copurchasing dataset.

Keywords

  1. graph theory
  2. networks
  3. diffusion processes
  4. random walks
  5. simplicial complexes
  6. Hodge Laplacian
  7. Hodge decomposition
  8. spectral embedding
  9. PageRank

MSC codes

  1. 05C82
  2. 05C
  3. 91D30
  4. 55U10
  5. 62-07

Formats available

You can view the full content in the following formats:

References

1.
Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann, Link communities reveal multiscale complexity in networks, Nature, 466 (2010), p. 761.
2.
R. Albert and A.-L. Barabási, Statistical mechanics of complex networks, Rev. Modern Phys., 74 (2002), p. 47.
3.
R. Albert, H. Jeong, and A.-L. Barabási, Error and attack tolerance of complex networks, Nature, 406 (2000), pp. 378--382.
4.
N. Alon and V. Milman, $\lambda_1$, isoperimetric inequalities for graphs, and superconcentrators, J. Combin. Theory Ser. B, 38 (1985), pp. 73--88, https://doi.org/10.1016/0095-8956(85)90092-9.
5.
C. Altafini, Stability analysis of diagonally equipotent matrices, Automatica, 49 (2013), pp. 2780--2785.
6.
R. Andersen, F. Chung, and K. Lang, Local graph partitioning using PageRank vectors, in 47th Annual IEEE Symposium on Foundations of Computer Science, IEEE, 2006, pp. 475--486.
7.
M. Avella-Medina, F. Parise, M. T. Schaub, and S. Segarra, Centrality measures for graphons: Accounting for uncertainty in networks, IEEE Trans. Network Sci. Engrg., (2018), https://doi.org/10.1109/TNSE.2018.2884235.
8.
S. Barbarossa and M. Tsitsvero, An introduction to hypergraph signal processing, in the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2016, pp. 6425--6429.
9.
M. Belkin and P. Niyogi, Laplacian eigenmaps and spectral techniques for embedding and clustering, in Advances in Neural Information Processing Systems, 2002, pp. 585--591.
10.
A. R. Benson, R. Abebe, M. T. Schaub, A. Jadbabaie, and J. Kleinberg, Simplicial closure and higher-order link prediction, Proc. Natl. Acad. Sci. USA, 115 (2018), pp. E11221--E11230, https://doi.org/10.1073/pnas.1800683115.
11.
A. R. Benson, D. F. Gleich, and J. Leskovec, Tensor spectral clustering for partitioning higher-order network structures, in Proceedings of the 2015 SIAM International Conference on Data Mining, SIAM, 2015, pp. 118--126, https://doi.org/10.1137/1.9781611974010.14.
12.
A. R. Benson, D. F. Gleich, and J. Leskovec, Higher-order organization of complex networks, Science, 353 (2016), pp. 163--166.
13.
A. R. Benson, R. Kumar, and A. Tomkins, Modeling user consumption sequences, in Proceedings of the 25th International Conference on World Wide Web, ACM Press, 2016, pp. 519--529, https://doi.org/10.1145/2872427.2883024.
14.
C. Berge and E. Minieka, Graphs and Hypergraphs, North-Holland, 1973.
15.
J. W. Berry, L. K. Fostvedt, D. J. Nordman, C. A. Phillips, C. Seshadhri, and A. G. Wilson, Why do simple algorithms for triangle enumeration work in the real world?, in Proceedings of the 5th Conference on Innovations in Theoretical Computer Science, ACM Press, 2014, pp. 225--234, https://doi.org/10.1145/2554797.2554819.
16.
M. Bianchini, M. Gori, and F. Scarselli, Inside PageRank, ACM Trans. Internet Technology, 5 (2005), pp. 92--128.
17.
G. Bianconi and C. Rahmede, Emergent hyperbolic network geometry, Sci. Rep., 7 (2017), art. 41974.
18.
N. Biggs, Algebraic potential theory on graphs, Bull. London Math. Soc., 29 (1997), pp. 641--682.
19.
P. Billingsley, Statistical methods in Markov chains, Ann. Math. Statist., 32 (1961), pp. 12--40.
20.
S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, Complex networks: Structure and dynamics, Phys. Rep., 424 (2006), pp. 175--308.
21.
P. Boldi and S. Vigna, Axioms for centrality, Internet Math., 10 (2014), pp. 222--262.
22.
B. Bollobás, Combinatorics: Set Systems, Hypergraphs, Families of Vectors, and Combinatorial Probability, Cambridge University Press, 1986.
23.
B. Bollobás, Modern Graph Theory, Grad. Texts in Math. 184, Springer Science & Business Media, 2013.
24.
P. Bonacich, Power and centrality: A family of measures, Amer. J. Soc., 92 (1987), pp. 1170--1182.
25.
P. Bonacich, A. C. Holdren, and M. Johnston, Hyper-edges and multidimensional centrality, Social Networks, 26 (2004), pp. 189--203.
26.
S. Boyd, P. Diaconis, and L. Xiao, Fastest mixing Markov chain on a graph, SIAM Rev., 46 (2004), pp. 667--689, https://doi.org/10.1137/S0036144503423264.
27.
S. Brin and L. Page, Reprint of: The anatomy of a large-scale hypertextual web search engine, Comput. Networks, 56 (2012), pp. 3825--3833.
28.
D. S. Callaway, M. E. Newman, S. H. Strogatz, and D. J. Watts, Network robustness and fragility: Percolation on random graphs, Phys. Rev. Lett., 85 (2000), pp. 5468--5471.
29.
G. Carlsson, Topology and data, Bull. Amer. Math. Soc., 46 (2009), pp. 255--308.
30.
D. Cartwright and F. Harary, Structural balance: A generalization of Heider's theory, Psych. Rev., 63 (1956), pp. 277--293.
31.
E. W. Chambers, J. Erickson, and P. Worah, Testing contractibility in planar rips complexes, in Proceedings of the Twenty-Fourth Annual Symposium on Computational Geometry, ACM Press, 2008, pp. 251--259, https://doi.org/10.1145/1377676.1377721.
32.
J. M. Chan, G. Carlsson, and R. Rabadan, Topology of viral evolution, Proc. Natl. Acad. Sci. USA, 110 (2013), pp. 18566--18571.
33.
T.-H. H. Chan, A. Louis, Z. G. Tang, and C. Zhang, Spectral properties of hypergraph Laplacian and approximation algorithms, J. ACM, 65 (2018), art. 15, https://doi.org/10.1145/3178123.
34.
C. Chen and M. Kerber, Persistent homology computation with a twist, in Proceedings 27th European Workshop on Computational Geometry, 2011, pp. 197--200.
35.
N. Chiba and T. Nishizeki, Arboricity and subgraph listing algorithms, SIAM J. Comput., 14 (1985), pp. 210--223, https://doi.org/10.1137/0214017.
36.
F. Chung, The heat kernel as the PageRank of a graph, Proc. Natl. Acad. Sci. USA, 104 (2007), pp. 19735--19740, https://doi.org/10.1073/pnas.0708838104.
37.
F. R. Chung, Spectral Graph Theory, CBMS Regional Conf. Ser. in Math. 92, AMS, 1997.
38.
F. R. Chung and L. Lu, Complex Graphs and Networks, CBMS Reg. Conf. Ser. Math. 107, AMS, 2006.
39.
M. B. Cohen, B. T. Fasy, G. L. Miller, A. Nayyeri, R. Peng, and N. Walkington, Solving 1-Laplacians in nearly linear time: Collapsing and expanding a topological ball, in Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, 2014, pp. 204--216, https://doi.org/10.1137/1.9781611973402.15.
40.
R. R. Coifman and S. Lafon, Diffusion maps, Appl. Comput. Harmon. Anal., 21 (2006), pp. 5--30.
41.
O. T. Courtney and G. Bianconi, Generalized network structures: The configuration model and the canonical ensemble of simplicial complexes, Phys. Rev. E, 93 (2016), art. 062311.
42.
V. de Silva and R. Ghrist, Coverage in sensor networks via persistent homology, Algebr. Geom. Topol., 7 (2007), pp. 339--358.
43.
V. de Silva, D. Morozov, and M. Vejdemo-Johansson, Dualities in persistent (co)homology, Inverse Problems, 27 (2011), art. 124003, https://doi.org/10.1088/0266-5611/27/12/124003.
44.
D. Dotterrer and M. Kahle, Coboundary expanders, J. Topology Anal., 4 (2012), pp. 499--514, https://doi.org/10.1142/s1793525312500197.
45.
B. Eckmann, Harmonische Funktionen und Randwertaufgaben in einem Komplex, Comment. Math. Helv., 17 (1944), pp. 240--255.
46.
E. Estrada and G. J. Ross, Centralities in simplicial complexes. Applications to protein interaction networks, J. Theoret. Biol., 438 (2018), pp. 46--60.
47.
T. Evans and R. Lambiotte, Line graphs, link partitions, and overlapping communities, Phys. Rev. E, 80 (2009), art. 016105.
48.
S. L. Feld, The focused organization of social ties, Amer. J. Soc., 86 (1981), pp. 1015--1035.
49.
D. C.-L. Fong and M. Saunders, LSMR: An iterative algorithm for sparse least-squares problems, SIAM J. Sci. Comput., 33 (2011), pp. 2950--2971, https://doi.org/10.1137/10079687x.
50.
L. C. Freeman, A set of measures of centrality based on betweenness, Sociometry, 40 (1977), pp. 35--41.
51.
L. C. Freeman, Centrality in social networks conceptual clarification, Social Networks, 1 (1978), pp. 215--239.
52.
G. Froyland and K. Padberg-Gehle, A rough-and-ready cluster-based approach for extracting finite-time coherent sets from sparse and incomplete trajectory data, Chaos, 25 (2015), art. 087406.
53.
A. Gautier, F. Tudisco, and M. Hein, A unifying Perron--Frobenius theorem for nonnegative tensors via multihomogeneous maps, SIAM J. Matrix Anal. Appl., 40 (2019), pp. 1206--1231, https://doi.org/10.1137/18M1165049.
54.
A. Ghosh, B. Rozemberczki, S. Ramamoorthy, and R. Sarkar, Topological signatures for fast mobility analysis, in Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM, 2018, pp. 159--168.
55.
R. Ghrist, Barcodes: The Persistent Topology of Data, Bull. Amer. Math. Soc., 45 (2008), pp. 61--75.
56.
R. Ghrist and A. Muhammad, Coverage and hole-detection in sensor networks via homology, in the Fourth International IEEE Symposium on Information Processing in Sensor Networks, IPSN 2005, IEEE, 2005, pp. 254--260.
57.
C. Giusti, R. Ghrist, and D. S. Bassett, Two's company, three (or more) is a simplex: Algebraic-topological tools for understanding higher-order structure in neural data, J. Comput. Neurosci., 41 (2016), pp. 1--14, https://10.1007/s10827-016-0608-6.
58.
C. Giusti, E. Pastalkova, C. Curto, and V. Itskov, Clique topology reveals intrinsic geometric structure in neural correlations, Proc. Natl. Acad. Sci. USA, 112 (2015), pp. 13455--13460.
59.
D. F. Gleich, PageRank beyond the Web, SIAM Rev., 57 (2015), pp. 321--363, https://doi.org/10.1137/140976649.
60.
D. F. Gleich and M. W. Mahoney, Using local spectral methods to robustify graph-based learning algorithms, in Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM Press, 2015, pp. 359--368, https://doi.org/10.1145/2783258.2783376.
61.
C. Godsil and G. F. Royle, Algebraic Graph Theory, Springer Science & Business Media, 2013.
62.
L. J. Grady and J. R. Polimeni, Discrete Calculus: Applied Analysis on Graphs for Computational Science, Springer Science & Business Media, 2010.
63.
J. Grilli, G. Barabás, M. J. Michalska-Smith, and S. Allesina, Higher-order interactions stabilize dynamics in competitive network models, Nature, 548 (2017), p. 210.
64.
S. Guattery, Graph Embeddings, Symmetric Real Matrices, and Generalized Inverses, Tech. Report NASA/CR-1998-208462, Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1998, http://handle.dtic.mil/100.2/ADA351054.
65.
A. Gundert and U. Wagner, On Laplacians of random complexes, in Proceedings of the Twenty-Eighth Annual Symposium on Computational Geometry, ACM Press, 2012, pp. 151--160, https://doi.org/10.1145/2261250.2261272.
66.
A. Hatcher, Algebraic Topology, Cambridge University Press, 2002.
67.
G. Henselman and R. Ghrist, Matroid Filtrations and Computational Persistent Homology, preprint, https://arxiv.org/abs/1606.00199, 2016.
68.
D. Horak and J. Jost, Spectra of combinatorial Laplace operators on simplicial complexes, Adv. Math., 244 (2013), pp. 303--336, https://doi.org/10.1016/j.aim.2013.05.007.
69.
I. Iacopini, G. Petri, A. Barrat, and V. Latora, Simplicial models of social contagion, Nature Commun., 10 (2019), pp. 1--9.
70.
N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland Math. Lib. 24, Elsevier, 2014.
71.
J. Jia, M. T. Schaub, S. Segarra, and A. R. Benson, Graph-based semi-supervised & active learning for edge flows, in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM Press, 2019, pp. 761--771.
72.
X. Jiang, L.-H. Lim, Y. Yao, and Y. Ye, Statistical ranking and combinatorial Hodge theory, Math. Program., 127 (2011), pp. 203--244, https://doi.org/10.1007/s10107-010-0419-x.
73.
M. Kahle, Topology of random simplicial complexes: A survey, AMS Contemp. Math, 620 (2014), pp. 201--222.
74.
L. Katz, A new status index derived from sociometric analysis, Psychometrika, 18 (1953), pp. 39--43.
75.
K. F. Kee, L. Sparks, D. C. Struppa, and M. Mannucci, Social groups, social media, and higher dimensional social structures: A simplicial model of social aggregation for computational communication research, Commun. Quart., 61 (2013), pp. 35--58.
76.
M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H. E. Stanley, and H. A. Makse, Identification of influential spreaders in complex networks, Nature Phys., 6 (2010), pp. 888--893.
77.
S. Klamt, U.-U. Haus, and F. Theis, Hypergraphs and cellular networks, PLoS Comput. Biol., 5 (2009), art. e1000385.
78.
K. Kloster and D. F. Gleich, Heat kernel based community detection, in Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM Press, 2014, pp. 1386--1395, https://doi.org/10.1145/2623330.2623706.
79.
I. M. Kloumann, J. Ugander, and J. Kleinberg, Block models and personalized PageRank, Proc. Natl. Acad. Sci. USA, 114 (2017), pp. 33--38.
80.
V. Krebs, Orgnet LLC, http://www.orgnet.com/, unpublished data.
81.
A. N. Langville and C. D. Meyer, Deeper inside PageRank, Internet Math., 1 (2004), pp. 335--380.
82.
M. Latapy, Main-memory triangle computations for very large (sparse (power-law)) graphs, Theoret. Comput. Sci., 407 (2008), pp. 458--473, https://doi.org/10.1016/j.tcs.2008.07.017.
83.
G. F. Lawler and A. D. Sokal, Bounds on the $L^2$ spectrum for Markov chains and Markov processes: A generalization of Cheeger's inequality, Trans. Amer. Math. Soc., 309 (1988), pp. 557--580, https://doi.org/10.2307/2000925.
84.
A. B. Lee, K. S. Pedersen, and D. Mumford, The nonlinear statistics of high-contrast patches in natural images, Internat. J. Comput. Vision, 54 (2003), pp. 83--103, https://doi.org/10.1023/a:1023705401078.
85.
L.-H. Lim, Hodge Laplacians on graphs, SIAM Rev., 62 (3) (2020), to appear.
86.
S. A. Marvel, J. Kleinberg, R. D. Kleinberg, and S. H. Strogatz, Continuous-time model of structural balance, Proc. Natl. Acad. Sci. USA, 108 (2011), pp. 1771--1776.
87.
N. Masuda, M. A. Porter, and R. Lambiotte, Random walks and diffusion on networks, Phys. Rep., 716/717 (2017), pp. 1--58.
88.
M. Mihail, Conductance and convergence of Markov chains---a combinatorial treatment of expanders, in 30th Annual Symposium on Foundations of Computer Science, IEEE, 1989, pp. 526--531, https://doi.org/10.1109/sfcs.1989.63529.
89.
B. Mohar, Y. Alavi, G. Chartrand, and O. Oellermann, The Laplacian spectrum of graphs, in Graph Theory, Combinatorics, and Applications, Vol. 2, Wiley, 1991, pp. 871--898.
90.
A. Muhammad and M. Egerstedt, Control using higher order Laplacians in network topologies, in Proc. 17th International Symposium on Mathematical Theory of Networks and Systems, 2006, pp. 1024--1038.
91.
S. Mukherjee and J. Steenbergen, Random walks on simplicial complexes and harmonics, Random Structures Algorithms, 49 (2016), pp. 379--405, https://doi.org/10.1002/rsa.20645.
92.
V. Nanda and R. Sazdanović, Simplicial models and topological inference in biological systems, in Discrete and Topological Models in Molecular Biology, Springer, 2014, pp. 109--141.
93.
M. E. J. Newman, The structure and function of complex networks, SIAM Rev., 45 (2003), pp. 167--256, https://doi.org/10.1137/S003614450342480.
94.
M. E. J. Newman, Modularity and community structure in networks, Proc. Natl. Acad. Sci. USA, 103 (2006), pp. 8577--8582, https://doi.org/10.1073/pnas.0601602103.
95.
M. E. J. Newman, Networks: An Introduction, Oxford University Press, 2010.
96.
A. Ortega, P. Frossard, J. Kovacevic, J. M. F. Moura, and P. Vandergheynst, Graph Signal Processing: Overview, Challenges, and Applications, Proc. IEEE, 106 (2018), pp. 808--828, https://doi.org/10.1109/JPROC.2018.2820126.
97.
B. Osting, S. Palande, and B. Wang, Towards Spectral Sparsification of Simplicial Complexes Based on Generalized Effective Resistance, preprint, https://arxiv.org/abs/1708.08436, 2017.
98.
N. Otter, M. A. Porter, U. Tillmann, P. Grindrod, and H. A. Harrington, A roadmap for the computation of persistent homology, EPJ Data Sci., 6 (2017), art. 17, https://doi.org/10.1140/epjds/s13688-017-0109-5.
99.
C. C. Paige and M. A. Saunders, LSQR: An algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Software, 8 (1982), pp. 43--71, https://doi.org/10.1145/355984.355989.
100.
O. Parzanchevski and R. Rosenthal, Simplicial complexes: Spectrum, homology and random walks, Random Structures Algorithms, 50 (2017), pp. 225--261.
101.
O. Parzanchevski, R. Rosenthal, and R. J. Tessler, Isoperimetric inequalities in simplicial complexes, Combinatorica, 36 (2015), pp. 195--227, https://doi.org/10.1007/s00493-014-3002-x.
102.
R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and A. Vespignani, Epidemic processes in complex networks, Rev. Modern Phys., 87 (2015), pp. 925--979.
103.
A. Patania, G. Petri, and F. Vaccarino, The shape of collaborations, EPJ Data Sci., 6 (2017), art. 18, https://doi.org/10.1140/epjds/s13688-017-0114-8.
104.
G. Petri, P. Expert, F. Turkheimer, R. Carhart-Harris, D. Nutt, P. J. Hellyer, and F. Vaccarino, Homological scaffolds of brain functional networks, J. Roy. Soc. Interface, 11 (2014), art. 20140873.
105.
F. T. Pokorny, M. Hawasly, and S. Ramamoorthy, Topological trajectory classification with filtrations of simplicial complexes and persistent homology, Internat. J. Robotics Res., 35 (2016), pp. 204--223, https://doi.org/10.1177/0278364915586713.
106.
L. Qi and Z. Luo, Tensor Analysis: Spectral Theory and Special Tensors, SIAM, 2017, https://doi.org/10.1137/1.9781611974751.
107.
F. Reza, Some topological considerations in network theory, IRE Trans. Circuit Theory, 5 (1958), pp. 30--42.
108.
R. Rosenthal, Simplicial branching random walks and their applications, preprint, https://arxiv.org/abs/1412.5406, 2014.
109.
J. P. Roth, An application of algebraic topology to numerical analysis: On the existence of a solution to the network problem, Proc. Natl. Acad. Sci. USA, 41 (1955), pp. 518--521.
110.
J. P. Roth, An application of algebraic topology: Kron's method of tearing, Quart. Appl. Math., 17 (1959), pp. 1--24.
111.
M. Salathé and J. H. Jones, Dynamics and control of diseases in networks with community structure, PLoS Comput. Biol., 6 (2010), art. e1000736, https://doi.org/10.1371/journal.pcbi.1000736.
112.
M. J. Salganik and D. D. Heckathorn, Sampling and estimation in hidden populations using respondent-driven sampling, Sociological Method., 34 (2004), pp. 193--240, https://doi.org/10.1111/j.0081-1750.2004.00152.x.
113.
M. T. Schaub, J.-C. Delvenne, M. Rosvall, and R. Lambiotte, The many facets of community detection in complex networks, Appl. Network Sci., 2 (2017), art. 4, https://doi.org/10.1007/s41109-017-0023-6.
114.
M. T. Schaub, J. Lehmann, S. N. Yaliraki, and M. Barahona, Structure of complex networks: Quantifying edge-to-edge relations by failure-induced flow redistribution, Network Sci., 2 (2014), pp. 66--89.
115.
M. T. Schaub and S. Segarra, Flow smoothing and denoising: Graph signal processing in the edge-space, in 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP), IEEE, 2018, pp. 735--739.
116.
A. Sinclair and M. Jerrum, Approximate counting, uniform generation and rapidly mixing Markov chains, Inform. and Comput., 82 (1989), pp. 93--133, https://doi.org/10.1016/0890-5401(89)90067-9.
117.
A. Solé-Ribalta, M. De Domenico, S. Gómez, and A. Arenas, Centrality rankings in multiplex networks, in Proceedings of the 2014 ACM Conference on Web Science, ACM, 2014, pp. 149--155.
118.
D. A. Spielman, Spectral graph theory and its applications, in the 48th Annual IEEE Symposium on Foundations of Computer Science, FOCS'07, IEEE, 2007, pp. 29--38.
119.
J. Steenbergen, C. Klivans, and S. Mukherjee, A Cheeger-type inequality on simplicial complexes, Adv. Appl. Math., 56 (2014), pp. 56--77, https://doi.org/10.1016/j.aam.2014.01.002.
120.
S. H. Strogatz, Exploring complex networks, Nature, 410 (2001), pp. 268--276, https://doi.org/10.1038/35065725.
121.
A. Tahbaz-Salehi and A. Jadbabaie, Distributed coverage verification in sensor networks without location information, IEEE Trans. Automat. Control, 55 (2010), pp. 1837--1849, https://doi.org/10.1109/TAC.2010.2047541.
122.
D. Taylor, F. Klimm, H. A. Harrington, M. Kramár, K. Mischaikow, M. A. Porter, and P. J. Mucha, Topological data analysis of contagion maps for examining spreading processes on networks, Nature Commun., 6 (2015), art. 7723.
123.
N. K. Vishnoi, Lx= b. Laplacian solvers and their algorithmic applications, Found. Trends Theoret. Comput. Sci., 8 (2012), pp. 1--141.
124.
S. Wasserman and K. Faust, Social Network Analysis: Methods and Applications, Cambridge University Press, 1994.
125.
J.-G. Young, G. Petri, F. Vaccarino, and A. Patania, Construction of and efficient sampling from the simplicial configuration model, Phys. Rev. E, 96 (2017), art. 032312.
126.
D. Zhou, J. Huang, and B. Schölkopf, Learning with hypergraphs: Clustering, classification, and embedding, in Advances in Neural Information Processing Systems, 2007, pp. 1601--1608.
127.
A. Zomorodian, Fast construction of the Vietoris--Rips complex, Comput. Graphics, 34 (2010), pp. 263--271, https://doi.org/10.1016/j.cag.2010.03.007.

Information & Authors

Information

Published In

cover image SIAM Review
SIAM Review
Pages: 353 - 391
ISSN (online): 1095-7200

History

Submitted: 17 July 2018
Accepted: 19 August 2019
Published online: 7 May 2020

Keywords

  1. graph theory
  2. networks
  3. diffusion processes
  4. random walks
  5. simplicial complexes
  6. Hodge Laplacian
  7. Hodge decomposition
  8. spectral embedding
  9. PageRank

MSC codes

  1. 05C82
  2. 05C
  3. 91D30
  4. 55U10
  5. 62-07

Authors

Affiliations

Funding Information

Air Force Office of Scientific Research https://doi.org/10.13039/100000181 : FA9550-13-1-0097
Army Research Office https://doi.org/10.13039/100000183 : W911NF-19-1-0057
Office of Defense Programs https://doi.org/10.13039/100006127
Horizon 2020 Framework Programme https://doi.org/10.13039/100010661 : 702410
National Science Foundation https://doi.org/10.13039/100000001 : DMS-1830274

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

View options

PDF

View PDF

Get Access

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media