Надіслати статтю
вул. Інститутська 11, м. Хмельницький, 29016

ДОСЛІДЖЕННЯ СИСТЕМ ЗВ’ЯЗКУ З СИГНАЛАМИ F-OFDM

RESEARCH COMMUNICATION SYSTEMS WITH F-OFDM SIGNALS

 Сторінки: 170-176. Номер: №5, 2021 (301)
 Автори:
ПЯТІН І.С.
Хмельницький політехнічний фаховий коледж національного університету «Львівська політехніка»
ORCID ID: 0000-0003-1898-6755
e-mail: ilkhmel@ukr.net
ГАВРОНСЬКИЙ В.Є.
Хмельницький політехнічний фаховий коледж національного університету «Львівська політехніка»
ORCID ID: 0000-0002-1529-1272
e-mail: gavronskiy@gmail.com
ЛУЖАНСЬКИЙ В.І.
Хмельницький національний університет
ORCID ID: 0000-0002-2698-3450
e-mail: luzhanskiy56@gmail.com
МИХАЛЬЧУК В.О.
Хмельницький національний університет
ORCID ID: 0000-0002-2924-2041
e-mail: 1306vadim1306@gmail.com
PYATIN I.S., GAVRONSKIY V.E.
Khmelnytskyі Politechnic Professional College by Lviv Politechnic National University
LUZHANSKIY V.I., MIKHALCHUK V.O.
Khmelnytskуі National University
DOI: https://www.doi.org/10.31891/2307-5732-2021-301-5-170-176
Рецензія/Peer review : 25.09.2021р.
Надрукована/Printed : 10.10.2021 р.
Анотація мовою оригіналу
Системи зв’язку п’ятого покоління (5G) забезпечують збільшення швидкості передачі даних, використання наднадійного зв’язку із малою затримкою (URLLC), мають високу спектральну ефективність, широкі можливості підключення та підвищену енергоефективність. Мультиплексування з ортогональним частотним поділом каналів і фільтром (F-OFDM) є сигналом, який отримують на виході фільтра. F-OFDM порівняно з OFDM забезпечує зниження позасмугового випромінювання, що покращує характеристики системи. Стаття присвячена порівнянню сигналів CP-OFDM і F-OFDM.
Ключові слова: сигнали CP-OFDM, сигнали F-OFDM, спектральна густина потужності, sinc-фільтр, ймовірність помилки на біт.

Розширена анотація англійською мовою

OFDM (Orthogonal frequency division multiplexing) signals are widely used in modern mobile standards. They have a number of disadvantages, such as the high ratio of peak power to average power (PAPR), large out-of-band components of the sinc shape spectrum, and the like. OFDM provides high spectrum efficiency due to orthogonal frequency multiplexing. To achieve orthogonality and avoid interference, it is necessary to align the signals of the transmitter and receiver in time and frequency. Imperfect synchronization can lead to suboptimal performance. Fifth generation (5G) communication systems promise several advantages over previous systems, including high data rates, ultra-low latency (URLLC), high spectral efficiency, extensive connectivity, and increased energy efficiency. In addition, machine-type (MTC) and Internet of Things (IoT) communication is expected to be handled better and more efficiently by the 5G system. Multiplexing with orthogonal frequency division multiplexing and a filter (F-OFDM) is a multi-carrier signal that is received at the output of the filter. F-OFDM in comparison with OFDM provides reduction of out-of-band radiation that allows to use the allocated spectrum effectively. Filtration is an effective way to suppress side petals in OFDM. As the side lobes of the spectrum decrease, a large amount of signal power is concentrated in the main lobe, which helps to reduce interference between channels. The mathematical description of signals CP-OFDM, Windowed OFDM, Filtered OFDM in the field of time and frequency is analyzed in the work. A study of the transmission and reception of F-OFDM signals. The requirements for the filter and its characteristics in the field of time and frequency are given. The block diagrams of the transmitter and receiver are given. In F-OFDM, the CP-OFDM signal is passed through the developed filter. Because the filter bandwidth corresponds to the signal bandwidth, only a few subcarriers close to the boundary are affected. The key consideration is that the length of the filter may exceed the length of the cyclic prefix for F-OFDM. The resulting inter-character interference is minimized due to the design of the filter using windows. The received signal passes through a matched filter and then through a conventional CP-OFDM receiver. It takes into account both the increase in filtration and the delay before the FFT operation. The spectra of CP-OFDM and F-OFDM signals were compared. The dependences of the error error per bit on the signal-to-noise ratio for F-OFDM signals have been studied.
Keywords: CP-OFDM signals, F-OFDM signals, power spectral density, sinc filter, bit error ratio.

References

  1. Xi Zhang, Ming Jia, Lei Chen, Jianglei Ma, and Jing Qiu, “Filtered-OFDM – Enabler for Flexible Wave-form in the  5th  Generation Cellular Networks”, in Proc.2015 IEEE GLOBECOM, San Diego, CA, 2015, pp. 1-6.
  2. Hugu Tulberg et’al “The METIS 5G System Concept: Meeting the 5G Requirements”, IEEE Communications Magazine Volume: 54, Issue: 12, Dec 2016.
  3. Park, E. Lee, S. Park, S. Raymond, S. Pyo and H. Jo, “Modeling and Analysis on Radio Interference of OFDM Waveforms for Coexistence Study,” in IEEE Access, vol. 7, pp. 35132-35147, 2019, doi: 10.1109/ACCESS.2019.2896280.
  4. Piatin I.S. Modeliuvannia spotvoren syhnalu u kanali peredachi/ I.S. Piatin, D.A. Makaryshkin // Herald of Khmelnytskyi National University. Technical sciences. – 2020. – №5. – S. 39-45.
  5. Boiko J., Pyatin I., Karpova L., Eromenko O. (2021) Study of the Influence of Changing Signal Propagation Conditions in the Communication Channel on Bit Error Rate. In: Ageyev D., Radivilova T., Kryvinska N. (eds) Data-Centric Business and Applications. Lecture Notes on Data Engineering and Communications Technologies, vol 69. Springer, Cham. https://doi.org/10.1007/978-3-030-71892-3_4
  6. Piatin I.S. Peredacha upravliaiuchoi informatsii u systemakh shyrokosmuhovykh telekomunikatsii tekhnolohii 5G /Iu. Boiko, I. Piatin, L. Karpova I. Parkhomei, // Mizhvidomchyi naukovo-tekhnichnyi zbirnyk «Adaptyvni systemy avtomatychnoho upravlinnia», 2021 – №1 (38). – S. 82-95. DOI://doi.org/10.20535/1560-8956.38.2021.233200
  7. Piatin I.S. Doslidzhennia nyzkhidnoi linii zviazku 5G / I.S. Piatin, Yu.M. Boiko // Pratsi VIII Mizhnarodnoi naukovo-praktychnoi konferentsii «Obrobka syhnaliv i nehausivskykh protsesiv» 25-26 travnia 2021 r., m Cherkasy, 2021 – s.68-70
  8. Boiko, V. Tolubko, O. Barabash, O. Eromenko and Y. Havrylko, “Signal processing with frequency and phase shift keying modulation in telecommunications”, Telkomnika (Telecommunication Computing Electronics and Control), vol. 17, no 4, pp. 2025-2038, August 2019.
  9. Boiko J. M. Osoblyvosti kvazikoherentnoi obrobky syhnaliv u zasobakh telekomunikatsii z chastotnoiu manipuliatsiieiu / J.M. Boiko, I.S. Piatin // Telekomunikatsiini ta informatsiini tekhnolohii №1, 2018 – S. 107-119.
  10. Boiko J. M. Teoretychni aspekty pidvyshchennia zavadostiikosti y efektyvnosti obrobky syhnaliv v radiotekhnichnykh prystroiakh ta zasobakh telekomunikatsiinykh system za naiavnosti zavad : monoghrafija / J. M. Boiko, A. Druzhinіn, S. V. Tolyupa. – Kyjiv : Loghos, 2018. – 227 s. URL: http://elar.khnu.km.ua/jspui/handle/123456789/6291.
  11. Zhurakovskyi, J. Boiko, V. Druzhynin, I. Zeniv, and O. Eromenko, “Increasing the efficiency of information transmission in communication channels,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 19, no. 3, September 2020, pp. 1306-1315. http://doi.org/10.11591/ijeecs.v19.i3.pp1306-1315.

Post Author: npetliaks

Translate